Home
Class 11
MATHS
Evaluate the following : (i) 1+.^(20)C...

Evaluate the following :
`(i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20)`
`(ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9)`
`(iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25)`
`(iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)`

Text Solution

AI Generated Solution

To evaluate the given expressions, we will use some properties of binomial coefficients and the binomial theorem. ### (i) Evaluate \( 1 + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \ldots + \binom{20}{20} \) Using the property of binomial coefficients, we know that: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8E|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8F|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8C|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: (i) .^(10)C_(5) (ii) .^(12)C_(8) (iii) .^(15)C_(12) (iv) .^(n+1)C_(n) (v) .^(14)C_(9)

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find ""^(18)C_(3)+^(18)C_(2)

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to