Home
Class 12
MATHS
Find AB and BA if exists from the follo...

Find AB and BA if exists from the following matrices A and B:
`(i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}]`
(ii) `A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}]`
`(iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given matrices step by step. ### Part (i) Given matrices: \[ A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -6 \\ -4 & 0 \end{pmatrix} \] **Step 1: Check if AB exists** - Matrix A is of order \(2 \times 3\) (2 rows and 3 columns). - Matrix B is of order \(2 \times 2\) (2 rows and 2 columns). - For the product AB to exist, the number of columns in A must equal the number of rows in B. Here, 3 (columns of A) ≠ 2 (rows of B), so **AB does not exist**. **Step 2: Check if BA exists** - For BA, matrix B is \(2 \times 2\) and matrix A is \(2 \times 3\). - The product BA can exist because the number of columns in B (2) equals the number of rows in A (2). - The resulting matrix will be of order \(2 \times 3\). **Step 3: Calculate BA** \[ BA = B \cdot A = \begin{pmatrix} 2 & -6 \\ -4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix} \] Calculating each element: - First row, first column: \(2 \cdot 2 + (-6) \cdot 0 = 4\) - First row, second column: \(2 \cdot 3 + (-6) \cdot 1 = 6 - 6 = 0\) - First row, third column: \(2 \cdot (-1) + (-6) \cdot 2 = -2 - 12 = -14\) - Second row, first column: \(-4 \cdot 2 + 0 \cdot 0 = -8\) - Second row, second column: \(-4 \cdot 3 + 0 \cdot 1 = -12\) - Second row, third column: \(-4 \cdot (-1) + 0 \cdot 2 = 4\) Thus, \[ BA = \begin{pmatrix} 4 & 0 & -14 \\ -8 & -12 & 4 \end{pmatrix} \] ### Part (ii) Given matrices: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ -1 & 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \] **Step 1: Check if AB exists** - A is \(3 \times 3\) and B is \(3 \times 3\). - Since the number of columns in A equals the number of rows in B, **AB exists**. **Step 2: Calculate AB** \[ AB = A \cdot B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ -1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \(1 \cdot 0 + 2 \cdot 2 + 3 \cdot 0 = 4\) - First row, second column: \(1 \cdot 0 + 2 \cdot 0 + 3 \cdot 2 = 6\) - First row, third column: \(1 \cdot 2 + 2 \cdot 0 + 3 \cdot 0 = 2\) - Second row, first column: \(0 \cdot 0 + 1 \cdot 2 + (-2) \cdot 0 = 2\) - Second row, second column: \(0 \cdot 0 + 1 \cdot 0 + (-2) \cdot 2 = -4\) - Second row, third column: \(0 \cdot 2 + 1 \cdot 0 + (-2) \cdot 0 = 0\) - Third row, first column: \(-1 \cdot 0 + 0 \cdot 2 + (-1) \cdot 0 = 0\) - Third row, second column: \(-1 \cdot 0 + 0 \cdot 0 + (-1) \cdot 2 = -2\) - Third row, third column: \(-1 \cdot 2 + 0 \cdot 0 + (-1) \cdot 0 = -2\) Thus, \[ AB = \begin{pmatrix} 4 & 6 & 2 \\ 2 & -4 & 0 \\ 0 & -2 & -2 \end{pmatrix} \] **Step 3: Check if BA exists** - For BA, B is \(3 \times 3\) and A is \(3 \times 3\). - Since the number of columns in B equals the number of rows in A, **BA exists**. **Step 4: Calculate BA** \[ BA = B \cdot A = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ -1 & 0 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \(0 \cdot 1 + 0 \cdot 0 + 2 \cdot (-1) = -2\) - First row, second column: \(0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 = 0\) - First row, third column: \(0 \cdot 3 + 0 \cdot (-2) + 2 \cdot (-1) = -2\) - Second row, first column: \(2 \cdot 1 + 0 \cdot 0 + 0 \cdot (-1) = 2\) - Second row, second column: \(2 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 = 4\) - Second row, third column: \(2 \cdot 3 + 0 \cdot (-2) + 0 \cdot (-1) = 6\) - Third row, first column: \(0 \cdot 1 + 2 \cdot 0 + 0 \cdot (-1) = 0\) - Third row, second column: \(0 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 = 2\) - Third row, third column: \(0 \cdot 3 + 2 \cdot (-2) + 0 \cdot (-1) = -4\) Thus, \[ BA = \begin{pmatrix} -2 & 0 & -2 \\ 2 & 4 & 6 \\ 0 & 2 & -4 \end{pmatrix} \] ### Part (iii) Given matrices: \[ A = \begin{pmatrix} 0 & 3 & 4 \\ 2 & 1 & -2 \\ 1 & -3 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \end{pmatrix} \] **Step 1: Check if AB exists** - A is \(3 \times 3\) and B is \(2 \times 3\). - Since the number of columns in A (3) does not equal the number of rows in B (2), **AB does not exist**. **Step 2: Check if BA exists** - For BA, B is \(2 \times 3\) and A is \(3 \times 3\). - Since the number of columns in B (3) equals the number of rows in A (3), **BA exists**. **Step 3: Calculate BA** \[ BA = B \cdot A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 & 4 \\ 2 & 1 & -2 \\ 1 & -3 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \(2 \cdot 0 + 1 \cdot 2 + 3 \cdot 1 = 0 + 2 + 3 = 5\) - First row, second column: \(2 \cdot 3 + 1 \cdot 1 + 3 \cdot (-3) = 6 + 1 - 9 = -2\) - First row, third column: \(2 \cdot 4 + 1 \cdot (-2) + 3 \cdot (-1) = 8 - 2 - 3 = 3\) - Second row, first column: \(-1 \cdot 0 + 0 \cdot 2 + (-2) \cdot 1 = 0 + 0 - 2 = -2\) - Second row, second column: \(-1 \cdot 3 + 0 \cdot 1 + (-2) \cdot (-3) = -3 + 0 + 6 = 3\) - Second row, third column: \(-1 \cdot 4 + 0 \cdot (-2) + (-2) \cdot (-1) = -4 + 0 + 2 = -2\) Thus, \[ BA = \begin{pmatrix} 5 & -2 & 3 \\ -2 & 3 & -2 \end{pmatrix} \] ### Summary of Results 1. **Part (i)**: - AB does not exist. - \( BA = \begin{pmatrix} 4 & 0 & -14 \\ -8 & -12 & 4 \end{pmatrix} \) 2. **Part (ii)**: - \( AB = \begin{pmatrix} 4 & 6 & 2 \\ 2 & -4 & 0 \\ 0 & -2 & -2 \end{pmatrix} \) - \( BA = \begin{pmatrix} -2 & 0 & -2 \\ 2 & 4 & 6 \\ 0 & 2 & -4 \end{pmatrix} \) 3. **Part (iii)**: - AB does not exist. - \( BA = \begin{pmatrix} 5 & -2 & 3 \\ -2 & 3 & -2 \end{pmatrix} \)

Let's solve the given matrices step by step. ### Part (i) Given matrices: \[ A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -6 \\ -4 & 0 \end{pmatrix} \] **Step 1: Check if AB exists** - Matrix A is of order \(2 \times 3\) (2 rows and 3 columns). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}] and C=[{:(1,2,3),(3,2,1),(8,7,9):}], then find AB-AC.

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] simplify : A^2+BC .

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .