Home
Class 12
MATHS
If F(x)=[(cos^(2)x,cosxsinx),(cosxsinx,s...

If `F(x)=[(cos^(2)x,cosxsinx),(cosxsinx,sin^(2)x)]` and the difference of `x` and `y` is the odd Multiple of `(pi)/(2),`then `F(x)F(y) `is :

A

Zero matrix

B

unit matrix

C

diagonal matrix

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the matrices \( F(x) \) and \( F(y) \) given that the difference \( x - y \) is an odd multiple of \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Define the matrices**: \[ F(x) = \begin{pmatrix} \cos^2 x & \cos x \sin x \\ \cos x \sin x & \sin^2 x \end{pmatrix} \] \[ F(y) = \begin{pmatrix} \cos^2 y & \cos y \sin y \\ \cos y \sin y & \sin^2 y \end{pmatrix} \] 2. **Multiply the matrices**: We need to compute \( F(x) F(y) \): \[ F(x) F(y) = \begin{pmatrix} \cos^2 x & \cos x \sin x \\ \cos x \sin x & \sin^2 x \end{pmatrix} \begin{pmatrix} \cos^2 y & \cos y \sin y \\ \cos y \sin y & \sin^2 y \end{pmatrix} \] The product of two matrices is calculated as follows: \[ F(x) F(y) = \begin{pmatrix} \cos^2 x \cdot \cos^2 y + \cos x \sin x \cdot \cos y \sin y & \cos^2 x \cdot \cos y \sin y + \cos x \sin x \cdot \sin^2 y \\ \cos x \sin x \cdot \cos^2 y + \sin^2 x \cdot \cos y \sin y & \cos x \sin x \cdot \cos y \sin y + \sin^2 x \cdot \sin^2 y \end{pmatrix} \] 3. **Simplify the elements**: - The first element: \[ \cos^2 x \cdot \cos^2 y + \cos x \sin x \cdot \cos y \sin y = \cos^2 x \cos^2 y + \frac{1}{2} \sin(2x) \sin(2y) \] - The second element: \[ \cos^2 x \cdot \cos y \sin y + \cos x \sin x \cdot \sin^2 y = \cos^2 x \cdot \cos y \sin y + \frac{1}{2} \sin(2x) \sin(2y) \] - The third element: \[ \cos x \sin x \cdot \cos^2 y + \sin^2 x \cdot \cos y \sin y = \cos x \sin x \cdot \cos^2 y + \frac{1}{2} \sin(2x) \sin(2y) \] - The fourth element: \[ \cos x \sin x \cdot \cos y \sin y + \sin^2 x \cdot \sin^2 y = \frac{1}{2} \sin(2x) \sin(2y) + \sin^2 x \sin^2 y \] 4. **Use the condition \( x - y = (2n + 1) \frac{\pi}{2} \)**: Since \( x - y \) is an odd multiple of \( \frac{\pi}{2} \), we have: \[ \cos(x - y) = 0 \] Thus, every term involving \( \cos(x - y) \) will vanish. 5. **Final result**: Since \( \cos(x - y) = 0 \), all elements of the resulting matrix will be zero: \[ F(x) F(y) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Conclusion: The product \( F(x) F(y) \) is the zero matrix.

To solve the problem, we need to find the product of the matrices \( F(x) \) and \( F(y) \) given that the difference \( x - y \) is an odd multiple of \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Define the matrices**: \[ F(x) = \begin{pmatrix} \cos^2 x & \cos x \sin x \\ \cos x \sin x & \sin^2 x \end{pmatrix} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Solve for x 3sin^(2)x-(cosxsinx)-4cos^(2)x=0

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If f(x)=(cos^2x+sin^4x)/(sin^2 x+cos^4x), for x in R, then f(2002) is equal to

If f(x)=2(1+sin x), then evaluate f((pi)/(2)) .

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

If P(x)=[cosxsinx-sinxcosx] , then show that P(x)P(y)=P(x+y) .

If f(x)={x^2 sin((pi x)/2), |x| =1 then f(x) is