Home
Class 12
MATHS
A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}]...

`A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}],C=[{:(-2,5),(3,4):}]`
find each of the following :
(i) A+B (ii) A-B
(iii) 3A-C (iv) AB
(V) BA

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will perform the following calculations step by step: Given matrices: - \( A = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} \) - \( B = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} \) - \( C = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \) ### (i) Finding \( A + B \) To add two matrices, we add their corresponding elements: \[ A + B = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 2 + 1 & 4 + 3 \\ 3 - 2 & 2 + 5 \end{pmatrix} \] Calculating the elements: \[ = \begin{pmatrix} 3 & 7 \\ 1 & 7 \end{pmatrix} \] ### (ii) Finding \( A - B \) To subtract two matrices, we subtract their corresponding elements: \[ A - B = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 2 - 1 & 4 - 3 \\ 3 + 2 & 2 - 5 \end{pmatrix} \] Calculating the elements: \[ = \begin{pmatrix} 1 & 1 \\ 5 & -3 \end{pmatrix} \] ### (iii) Finding \( 3A - C \) First, we multiply matrix \( A \) by 3: \[ 3A = 3 \times \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ 9 & 6 \end{pmatrix} \] Now, we subtract matrix \( C \): \[ 3A - C = \begin{pmatrix} 6 & 12 \\ 9 & 6 \end{pmatrix} - \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 6 + 2 & 12 - 5 \\ 9 - 3 & 6 - 4 \end{pmatrix} \] Calculating the elements: \[ = \begin{pmatrix} 8 & 7 \\ 6 & 2 \end{pmatrix} \] ### (iv) Finding \( AB \) To multiply matrices \( A \) and \( B \): \[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} \] Calculating each element: - First row, first column: \( 2 \times 1 + 4 \times (-2) = 2 - 8 = -6 \) - First row, second column: \( 2 \times 3 + 4 \times 5 = 6 + 20 = 26 \) - Second row, first column: \( 3 \times 1 + 2 \times (-2) = 3 - 4 = -1 \) - Second row, second column: \( 3 \times 3 + 2 \times 5 = 9 + 10 = 19 \) Thus, \[ AB = \begin{pmatrix} -6 & 26 \\ -1 & 19 \end{pmatrix} \] ### (v) Finding \( BA \) To multiply matrices \( B \) and \( A \): \[ BA = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \times 2 + 3 \times 3 = 2 + 9 = 11 \) - First row, second column: \( 1 \times 4 + 3 \times 2 = 4 + 6 = 10 \) - Second row, first column: \( -2 \times 2 + 5 \times 3 = -4 + 15 = 11 \) - Second row, second column: \( -2 \times 4 + 5 \times 2 = -8 + 10 = 2 \) Thus, \[ BA = \begin{pmatrix} 11 & 10 \\ 11 & 2 \end{pmatrix} \] ### Summary of Results 1. \( A + B = \begin{pmatrix} 3 & 7 \\ 1 & 7 \end{pmatrix} \) 2. \( A - B = \begin{pmatrix} 1 & 1 \\ 5 & -3 \end{pmatrix} \) 3. \( 3A - C = \begin{pmatrix} 8 & 7 \\ 6 & 2 \end{pmatrix} \) 4. \( AB = \begin{pmatrix} -6 & 26 \\ -1 & 19 \end{pmatrix} \) 5. \( BA = \begin{pmatrix} 11 & 10 \\ 11 & 2 \end{pmatrix} \)

To solve the problem, we will perform the following calculations step by step: Given matrices: - \( A = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix} \) - \( B = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} \) - \( C = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \) ### (i) Finding \( A + B \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A={1,2,3,4},B={2,3,4,5} and C={4,5,6,7} , then find each of the following : (i) A - (B-C) (ii) (A- B) -C .

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}] and AB-CD=0 find D.

If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matrix of order 2 xx 2 find : (i) AB (ii) BA (iii) AI (Iv) A^2 (v) B^2A

If A={1,2,3,4},B={3,4,5},C={1,5,6} , then findof the following : (i) A cup B (ii) A cup (B cap C) (ii) A - B (iv) A - (B cup C) .

If A{1,2,3},B={3,4}and C={4,5,6} , then find the each of the following : (i) A cap(B cupC) (ii) (A-B)cupC (iii) (A cupB)-C (iv) (A cap B)cup C .

If A = {1,2,3,4},B={2,4,6,8} and C={3,4,5,6} , then find each of the following , (i) (A - B) cap C (ii) (A cap B) -C (iii) A- (B-C) (iv) A cup (B - C) .

If A=[{:(,2),(,5):}], B=[{:(,1),(,4):}] and C=[{:(,6),(,-2):}] , find (i) B+C (ii) A-C (iii) A+B-C (iv) A-B+C

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

Let A= [[2,4],[3,2]], B=[[1,3],[-2,5]], C=[[-2,5],[3,4]] find A-B