Home
Class 12
MATHS
Choose the correct answer from the follo...

Choose the correct answer from the following :
The value of `|{:(-costheta,sintheta),(-sintheta,-costheta):}|`is:

A

`-1`

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \left| \begin{array}{cc} -\cos \theta & \sin \theta \\ -\sin \theta & -\cos \theta \end{array} \right| \] we can use the formula for a 2x2 determinant: \[ \text{det} = ad - bc \] where \( a, b, c, d \) are the elements of the matrix: \[ \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = \left| \begin{array}{cc} -\cos \theta & \sin \theta \\ -\sin \theta & -\cos \theta \end{array} \right| \] Here, we identify: - \( a = -\cos \theta \) - \( b = \sin \theta \) - \( c = -\sin \theta \) - \( d = -\cos \theta \) Now, substituting these values into the determinant formula: \[ \text{det} = (-\cos \theta)(-\cos \theta) - (\sin \theta)(-\sin \theta) \] Calculating each term: 1. The first term: \[ (-\cos \theta)(-\cos \theta) = \cos^2 \theta \] 2. The second term: \[ (\sin \theta)(-\sin \theta) = -\sin^2 \theta \] So we have: \[ \text{det} = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity, we know: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Thus, the value of the determinant is: \[ \text{det} = 1 \] ### Final Answer: The value of the determinant is \( 1 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

Evaluate Delta=|{:(sintheta, costheta),(-costheta,sintheta):}|

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

If tantheta=a/b then find the value of (costheta+sintheta)/(costheta-sintheta)

If tantheta=4/5 , find the value of (costheta-sintheta)/(costheta+sintheta) .

Find the inverse of the following matrix: |[costheta,sintheta],[-sintheta,costheta]|