Home
Class 12
MATHS
Solve the following cquations by matrix ...

Solve the following cquations by matrix method :
(i) 3x+y=10
x+2y=5
(ii) x+3y=11
3x-y=3.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations using the matrix method, we will follow these steps for both sets of equations. ### Part (i): Solve the equations 3x + y = 10 and x + 2y = 5 1. **Write the equations in matrix form**: The equations can be represented in the form \( AX = B \), where: \[ A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 10 \\ 5 \end{pmatrix} \] 2. **Find the inverse of matrix A**: The inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Here, \( a = 3, b = 1, c = 1, d = 2 \). - Calculate the determinant \( ad - bc = 3 \cdot 2 - 1 \cdot 1 = 6 - 1 = 5 \). - Thus, the inverse is: \[ A^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{3}{5} \end{pmatrix} \] 3. **Multiply A inverse with B**: Now, we calculate \( X = A^{-1}B \): \[ X = \begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 10 \\ 5 \end{pmatrix} \] - First row: \( \frac{2}{5} \cdot 10 + -\frac{1}{5} \cdot 5 = \frac{20}{5} - \frac{5}{5} = 4 - 1 = 3 \) - Second row: \( -\frac{1}{5} \cdot 10 + \frac{3}{5} \cdot 5 = -\frac{10}{5} + \frac{15}{5} = -2 + 3 = 1 \) - Thus, \( X = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \). 4. **Solution**: Therefore, the solution is \( x = 3 \) and \( y = 1 \). ### Part (ii): Solve the equations x + 3y = 11 and 3x - y = 3 1. **Write the equations in matrix form**: The equations can be represented as: \[ A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 11 \\ 3 \end{pmatrix} \] 2. **Find the inverse of matrix A**: Calculate the determinant: \[ ad - bc = 1 \cdot (-1) - 3 \cdot 3 = -1 - 9 = -10 \] Thus, the inverse is: \[ A^{-1} = \frac{1}{-10} \begin{pmatrix} -1 & -3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & -\frac{1}{10} \end{pmatrix} \] 3. **Multiply A inverse with B**: Now, we calculate \( X = A^{-1}B \): \[ X = \begin{pmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & -\frac{1}{10} \end{pmatrix} \begin{pmatrix} 11 \\ 3 \end{pmatrix} \] - First row: \( \frac{1}{10} \cdot 11 + \frac{3}{10} \cdot 3 = \frac{11}{10} + \frac{9}{10} = \frac{20}{10} = 2 \) - Second row: \( \frac{3}{10} \cdot 11 - \frac{1}{10} \cdot 3 = \frac{33}{10} - \frac{3}{10} = \frac{30}{10} = 3 \) - Thus, \( X = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \). 4. **Solution**: Therefore, the solution is \( x = 2 \) and \( y = 3 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4d|13 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations by matrix method: 5x+2y=3,\ \ 3x+2y=5

Solve the following system of equations by matrix method: 3x+7y=4,\ \ x+2y=-1

Solve the equations by matrix method : (i) x+2y+z=7 x+2y+z=7 x+3z=11

Solve the following system of equations by matrix method: 3x+y=7,\ \ 5x+3y=12

Solve the following system of equations by matrix method: 3x+y=19 ,\ \ 3x-y=23

Solve the following equations by matrix method. 2x + y + z = 1, x - 2y - 3z=1 and 3x + 2y +4z=5

Solve the following system of equations by matrix method: 3x+4y-5=0,\ \ x-y+3=0

Solve the following system of equations by matrix method : x+y-2z=3 , 2x+3y+z=10 and 3x-y-7z=1

Solve the following system of equations by matrix method: x+y-z=3 , 2x+3y+z=10 ,3x-y-7z=1

Solve the following system of equations by matrix method : 5x+7y+2=0 , 4x+6y+3=0