Home
Class 12
MATHS
int sinx/sin(3x) dx=...

`int sinx/sin(3x) dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x}{\sin(3x)} \, dx\), we can follow these steps: ### Step 1: Use the identity for \(\sin(3x)\) We know that: \[ \sin(3x) = 3\sin x - 4\sin^3 x \] Thus, we can rewrite the integral: \[ \int \frac{\sin x}{\sin(3x)} \, dx = \int \frac{\sin x}{3\sin x - 4\sin^3 x} \, dx \] **Hint for Step 1:** Recall the trigonometric identity for \(\sin(3x)\) to simplify the integral. ### Step 2: Factor out \(\sin x\) from the denominator Now, we can factor \(\sin x\) out of the denominator: \[ \int \frac{\sin x}{\sin x(3 - 4\sin^2 x)} \, dx = \int \frac{1}{3 - 4\sin^2 x} \, dx \] **Hint for Step 2:** Look for common factors in the numerator and denominator to simplify the expression. ### Step 3: Rewrite the integral in terms of \(\tan x\) Next, we can use the substitution \(\sin^2 x = \frac{1}{1 + \tan^2 x}\) and rewrite the integral: \[ \int \frac{1}{3 - 4\sin^2 x} \, dx = \int \frac{1}{3 - 4\left(\frac{1}{1 + \tan^2 x}\right)} \, dx \] This simplifies to: \[ \int \frac{1 + \tan^2 x}{3(1 + \tan^2 x) - 4} \, dx = \int \frac{1 + \tan^2 x}{3 + 3\tan^2 x - 4} \, dx = \int \frac{1 + \tan^2 x}{-1 + 3\tan^2 x} \, dx \] **Hint for Step 3:** Use the substitution \(t = \tan x\) to simplify the integral further. ### Step 4: Substitute \(t = \tan x\) Now, we differentiate \(t = \tan x\): \[ dt = \sec^2 x \, dx \quad \text{or} \quad dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \] Substituting this into the integral gives: \[ \int \frac{1 + t^2}{-1 + 3t^2} \cdot \frac{dt}{1 + t^2} = \int \frac{dt}{-1 + 3t^2} \] **Hint for Step 4:** Remember to change the differential when you substitute \(t = \tan x\). ### Step 5: Integrate using the formula for \(\int \frac{1}{a^2 - x^2} \, dx\) Now, we can rewrite the integral: \[ \int \frac{dt}{-1 + 3t^2} = \int \frac{dt}{\sqrt{3^2 - t^2}} \quad \text{(after factoring out -1)} \] Using the formula \(\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C\), we have: \[ \frac{1}{2\sqrt{3}} \ln \left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + C \] **Hint for Step 5:** Familiarize yourself with the standard integral formulas for logarithmic functions. ### Step 6: Substitute back \(t = \tan x\) Finally, we substitute back \(t = \tan x\): \[ \frac{1}{2\sqrt{3}} \ln \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right| + C \] **Hint for Step 6:** Always remember to revert back to the original variable after integration. ### Final Result Thus, the final answer for the integral is: \[ \int \frac{\sin x}{\sin(3x)} \, dx = \frac{1}{2\sqrt{3}} \ln \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int sin( x-a)/ sinx dx (ii) int sinx/sin(x-a )dx

Evaluate int (sin x)/(sin 3x) dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sinx)/(sin(x-a))dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

int(sinx)/(1+sin x) dx

Evaluate: int(sinx)/(sin3x)dxdot