Home
Class 12
MATHS
Evaluate : int1/(x^2+2x+5)dx...

`Evaluate : int1/(x^2+2x+5)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{x^2 + 2x + 5} \, dx \), we will follow these steps: ### Step 1: Rewrite the quadratic expression First, we need to rewrite the expression \( x^2 + 2x + 5 \) in a form that is easier to integrate. We can complete the square for the quadratic part: \[ x^2 + 2x + 5 = (x^2 + 2x + 1) + 4 = (x + 1)^2 + 4 \] ### Step 2: Substitute the expression into the integral Now, we can substitute this back into the integral: \[ \int \frac{1}{(x + 1)^2 + 4} \, dx \] ### Step 3: Identify the standard form The integral now resembles the standard form \( \int \frac{1}{x^2 + a^2} \, dx \), where \( a^2 = 4 \) (thus \( a = 2 \)). The formula for this integral is: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] ### Step 4: Apply the formula In our case, we have \( x \) replaced by \( x + 1 \) and \( a = 2 \): \[ \int \frac{1}{(x + 1)^2 + 4} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x + 1}{2} \right) + C \] ### Step 5: Write the final answer Thus, the final answer to the integral is: \[ \int \frac{1}{x^2 + 2x + 5} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x + 1}{2} \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^2+4x-5)\ dx

Evaluate: int1/((x^2+2x+2))dx

Evaluate: int1/(2x^2+x-1)dx

Evaluate: int1/(2x^2+x-1)dx

Evaluate: int1/(2x^2-x-1)dx

Evaluate: int1/(2x^2+x-1)dx

Evaluate: int1/(2x^2+x-1)dx

Evaluate: int1/(x^2-x+1)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx