Home
Class 12
MATHS
int(1)^(2) (x)/(sqrt(1+2x^(2)))dx...

`int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{2} \frac{x}{\sqrt{1 + 2x^2}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_{1}^{2} \frac{x}{\sqrt{1 + 2x^2}} \, dx. \] ### Step 2: Multiply and Divide by 4 Next, we multiply and divide the integrand by 4: \[ I = \int_{1}^{2} \frac{4x}{4\sqrt{1 + 2x^2}} \, dx = \int_{1}^{2} \frac{4x}{\sqrt{4(1 + 2x^2)}} \, dx. \] ### Step 3: Substitution Let us make the substitution \( t = 1 + 2x^2 \). Then, we differentiate: \[ dt = 4x \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x}. \] ### Step 4: Change the Limits Now we need to change the limits of integration. When \( x = 1 \): \[ t = 1 + 2(1^2) = 3, \] and when \( x = 2 \): \[ t = 1 + 2(2^2) = 9. \] ### Step 5: Substitute in the Integral Now substituting \( t \) and \( dx \) into the integral, we have: \[ I = \int_{3}^{9} \frac{1}{\sqrt{t}} \, dt. \] ### Step 6: Integrate The integral of \( \frac{1}{\sqrt{t}} \) is: \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t}. \] Thus, \[ I = 2\sqrt{t} \bigg|_{3}^{9} = 2\sqrt{9} - 2\sqrt{3} = 6 - 2\sqrt{3}. \] ### Step 7: Final Result Thus, we have: \[ I = 6 - 2\sqrt{3}. \] ### Step 8: Simplify We can also express this as: \[ I = 2(3 - \sqrt{3}). \] ### Conclusion The final value of the integral is: \[ I = 2(3 - \sqrt{3}). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int_(1/2)^1 dx/(x^2sqrt(1-x^2))

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,