Home
Class 12
MATHS
int(2)^(4) x dx...

`int_(2)^(4) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{4} x \, dx \), we can follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral: \[ I = \int_{2}^{4} x \, dx \] ### Step 2: Use the power rule for integration The power rule states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] For our integral, \( n = 1 \). Therefore, we have: \[ \int x \, dx = \frac{x^{1+1}}{1+1} = \frac{x^2}{2} \] ### Step 3: Apply the limits of integration Now we will evaluate the integral from 2 to 4: \[ I = \left[ \frac{x^2}{2} \right]_{2}^{4} \] ### Step 4: Substitute the upper limit First, substitute the upper limit (4): \[ \frac{4^2}{2} = \frac{16}{2} = 8 \] ### Step 5: Substitute the lower limit Now, substitute the lower limit (2): \[ \frac{2^2}{2} = \frac{4}{2} = 2 \] ### Step 6: Calculate the definite integral Now, subtract the lower limit result from the upper limit result: \[ I = 8 - 2 = 6 \] ### Final Answer Thus, the value of the integral \( \int_{2}^{4} x \, dx \) is: \[ \boxed{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(11) int_(2)^(4)|x-1|dx

The value of integral int_(-2)^(4) x[x]dx is

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

The value of integral int_(2)^(4)(dx)/(x) is :-

int tan^(2)xsec^(4)x dx

int_2^4 1/x dx is equal to

int_(1)^(4) (2x^(2) +1) dx

Evaluate int tan ^(2) x sec^(4) x dx

int_0^4 (2x-1) dx