Home
Class 12
MATHS
int(a)^(b) x dx...

`int_(a)^(b) x dx`

Text Solution

Verified by Experts

we know that
`overset(b)underset(a)(int) f(x) dx= underset( h to0)(" lim") h [f(a)+f(a+h)`
`+f(a+2h)+....+f{a+(n-1)h}]`
` " where " nh=b-a`
` " Here " a=a,b= b " and " f(x)=x`
` :.underset(a)overset(b)(int) x dx =underset( h to 0)("lim") h[a+(a+h)+(a+2h)`
`+.....+a+(n-1)h]`
`underset(h to0)("lim") h[(a+a+.....+ n " times ")`
`+h{1+2+.....(n-1)}]`
`=underset(h to 0)("lim") [hna +h^(2).(n(-1))/(2)]`
`=underset(h to 0)("lim") [hna +.(hn(nh-h))/(2)]`
`=underset(h to 0)("lim")[(b-a)a+.((b-a)(b-a-h))/(2)]"(":. nh =b-a")"`
`=[(b-a)a+.((b-a)^(2))/(2)]`
`=(b-a)(a+(b-1)/(2))=(b-a)((2a+b-a)/(2))`
`=(b-a)((a+b)/(2))=(b^(2)-a^(2))/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.9|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.7|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)cos x dx

Evaluate. int_(a)^(b)cos x dx

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

Evaluate the following integrals using limit of sum. int_(a)^(b)cos x dx

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

If a function (continuos and twice differentiable) is always concave upward in an interval, then its graph lies always below the segment joining extremities of the graph in that interval and vice-versa. Let f:R^(+)toR^(+) is such that f"(x)ge0 AAx in [a,b] . Then value of int_(a)^(b)f(x) dx cannot exceed:

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

int_(a)^(b) sin x dx

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx