Home
Class 11
MATHS
If I = [(1,0),(0,1)] and E = [(0,1),(0,0...

If `I = [(1,0),(0,1)] and E = [(0,1),(0,0)]` then show that `(aI + bE)^(3) = a^(3)I+3a^(2)bE` where I is identify matrix of order 2.

Answer

Step by step text solution for If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2. by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MARCH - 2016 (ANDHRA PRADESH)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section- C(Long answer type questions)|7 Videos
  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos

Similar Questions

Explore conceptually related problems

If I=[{:(1,0),(0,1):}] and E=[{:(0,1),(0,0):}] , show that (aI + bE)^(3) =a^(3)I + 3a^(2)bE . Where I is unit matrix of order 2.

if A = [(I,0)(0,-i)] then show that A^(2) = -1 (i^(2)=-1) .

Knowledge Check

  • If A=[(0,-1),(1,0)],B=[(0,i),(i,0)] then

    A
    `A^(2)=B^(2)=I`
    B
    `A^(2)=B^(2)=-I`
    C
    `A^(2)=I,B^(2)=-I`
    D
    `A^(2)=-I,B^(2)=I`
  • If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)],C=[(0,i),(i,0)] then

    A
    `AB=-BA=-I`
    B
    `AB=-BA=O`
    C
    `AB=-BA=I`
    D
    none
  • If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)],C=[(0,i),(i,0)] then

    A
    `A^(2)=B^(2)=C^(2)=-I`
    B
    `A^(2)=B^(2)=C^(2)=O`
    C
    `A^(2)=B^(2)=C^(2)=I`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

    If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

    If A= [(i,0),(0,-i)] , then show that A^(2)= -I, (i^(2)= -1)

    If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I

    If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0