Home
Class 11
MATHS
1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) =...

`1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) = (n (n + 1) (2 n + 1))/( 6)`

Text Solution

Verified by Experts

The correct Answer is:
`= (n(n + 1) (2 n + 1))/( 6)` for all `n in N`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |45 Videos

Similar Questions

Explore conceptually related problems

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

If alpha in R, n in N " and " n + 2 (n - 1)+ 3 (n-2) + …… +(n-1)2 + n.1 = alpha n ( n + 1) (n + 2) , " then " alpha =

If n is a positive integer, prove that 1-2n +(2n(2n-1))/(2!) - (2n(2n-1) (2n-2))/(3!) +… + (-1)^(n-1) (2n(2n-1) …(n+2))/((n-1)!) = (-1)^(n+1) ((2n)!)/(2(n!)^(2))