Home
Class 11
MATHS
1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) =...

`1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) = (n (n + 1) (2 n + 1))/( 6)`

Text Solution

Verified by Experts

The correct Answer is:
`= (n(n + 1) (2 n + 1))/( 6)` for all `n in N`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |45 Videos

Similar Questions

Explore conceptually related problems

1^(2) + (1^(2) + 2^(2)) + (1^(2) + 2^(2) + 3^(2))+ . . . upto n terms = (n (n + 1)^(2) (n + 2))/( 12)

1.2.3. + 2.3.4 + 3.4.5 + . . . upto n terms =(n (n + 1) (n + 2) (n + 3))/( 4)

Knowledge Check

  • If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

    A
    `1//2`
    B
    `1`
    C
    `3//2`
    D
    `2`
  • If alpha in R, n in N " and " n + 2 (n - 1)+ 3 (n-2) + …… +(n-1)2 + n.1 = alpha n ( n + 1) (n + 2) , " then " alpha =

    A
    `1/2`
    B
    `1/3`
    C
    `1/5`
    D
    `1/6`
  • underset(n rarr infty)("lim") [(1)/(n)+ (n^(2))/((n + 1)^(3)) + (n^(2))/((n + 2)^(3)) + (n^(2))/((n + 3)^(3)) + .....+(1)/(125n)] =

    A
    `(3)/(8)`
    B
    `(15)/(32)`
    C
    `(12)/(25)`
    D
    `(35)/(72)`
  • Similar Questions

    Explore conceptually related problems

    If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

    Lt_(n rarr oo)[(n^(2))/((n^(2) +1)^(3//2))+(n^(2))/((n^(2) + 2)^(3//2))+...+(n^(2))/([n^(2)+(n-1)^(2)]^(3//2))]

    If n is a positive integer, prove that 1-2n +(2n(2n-1))/(2!) - (2n(2n-1) (2n-2))/(3!) +… + (-1)^(n-1) (2n(2n-1) …(n+2))/((n-1)!) = (-1)^(n+1) ((2n)!)/(2(n!)^(2))

    If alpha in R, n in N and n + 2 (n-1) + 3(n -2) +…+ (n-1) 2 + n .1 = alpha n (n +1) (n +2), then alpha =

    If H_(n) = 1+ (1)/(2) + (1)/(3) + …. + (1)/( n) , AA n in N , then H_(1) + H_(2) + H_(3) + …. + H_(n) =