Home
Class 12
MATHS
Find the domain of f(x) = sqrt (|x|-{x})...

Find the domain of `f(x) = sqrt (|x|-{x})` (where `{*}` denots the fractional part of x).

Text Solution

Verified by Experts

The correct Answer is:
A

We have `f(x)=(sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))`
`:.underset(xto0^(+))limf(x)=underset(hto0)limf(0+h)`
`=underset(hto0)lim(sin^(-1)(1-{0+h})cos^(-1)(1-{0+h}))/(sqrt(2{0+h})(1-{0+h}))`
`=underset(hto0)lim(sin^(-1)(1-h)cos^(-1)(1-h))/(sqrt(2h)(1-h))`
`=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(1-h))/(sqrt(2)h)`
In second limit, put `1-h=costheta.` Then
`underset(xto0^(+))limf(x)=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(costheta))/(sqrt(2(1-costheta)))`
`=underset (hto0)lim(sin^(-1)(1-h))/((1-h))underset(thetato0)lim(theta)/(2sin(theta//2))(becausethetagt0)`
`=sin^(-1)1xx1=pi//2`
and `underset(xto0^(-))limf(x)=underset(hto0)limf(0-h)`
`=underset(hto0)lim(sin^(-1)(1-{0-h})cos^(-1)(1-{0-h}))/(sqrt(2{0-h}")")(1-{0-h}))`
`=underset(hto0)lim(sin^(-1)(1+h-1)cos^(-1)(1+h-1))/(sqrt(2(-h+1))(1+h-1))`
`=underset(hto0)lim(sin^(-1)h)/(h)underset(hto0)lim(cos^(-1)h)/(sqrt(2(1-h)))`
`=1(pi//2)/(sqrt(2))=(pi)/(2sqrt(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=1/(sqrt(x+|x|))

find the domain of f(x)=sqrt((1-|x|)/(2-|x|))

Knowledge Check

  • The domain of f(x) = sqrt(16 -x^2 ) is

    A
    `(-4,4)`
    B
    `[-4,4]`
    C
    `x le 4`
    D
    `x ge 4`
  • The domain of f(x) = (1)/( sqrt( |X|-x) is

    A
    The set of all non zero integers
    B
    The set of all negative real numbers
    C
    The set of all positive real number
    D
    the set of all rational numbers
  • Similar Questions

    Explore conceptually related problems

    Find the domain of f(x)=1/(sqrt(|[|x|-1]|-5))

    The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is (a) [-1,1]-(1/(2,1)) (b) [-1,-1/2]uu[(0,1)/2]uu{1} (c) [-1,1/2] (d) [-1/2,1]

    Find the domain of f(x)=sqrt(sinx)+sqrt(16-x^2)

    Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

    Find the domain and range of f(x)=sqrt(x^2-4x+6)

    Find the domain and range of f(x)=sqrt(3-2x-x^2)