Home
Class 12
MATHS
Let f(x)={1+(2x)/a ,0lt=x<1a x ,1lt=x<2d...

Let `f(x)={1+(2x)/a ,0lt=x<1a x ,1lt=x<2dotIf("lim")_(xvec1)f(x)e xi s t s ,t h e nai s` 1 (b) `-1` (c) 2 (d) `-2`

A

`underset(xto5^(-))f(x)=0`

B

`underset(xto5^(+))f(x)=1`

C

`underset(xto5)lim f(x)` does not exist

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B, C

R.H.L.`=underset(hto0)limf(1+h)=underset(hto0)lim(1+h)=a`
L.H.L.`=underset(hto0)limf(1-h)=underset(hto0)lim{1+(2)/(a)(1-h)}=1+(2)/(a)`
`underset(xto1)limf(x)" exists "implies"R.H.L.=L.H.L. Therefore"`,
`a=1+(2)/(a) " or "a=2,-1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Single)|76 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The number of points of discontinuity of g(x)=f(f(x)) where f(x) is defined as, f(x)={1+x ,0lt=xlt=2 3-x ,2 2

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Knowledge Check

  • If the p.d.f. f(x)={{:(x/2",", 0 lt x lt 2), (0",", "elsewhere"):} then E(3x^(2)-2x)= ________.

    A
    `2/3`
    B
    `4/3`
    C
    `10/3`
    D
    `7/3`
  • Similar Questions

    Explore conceptually related problems

    In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

    If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x >0 f(x)={1/(64),0lt=xlt=1/4x^2,1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

    Let f(x)=f_1(x)-2f_2 (x) , where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

    Let f(x)=|x^2-3x-4|,-1lt=xlt=4 Then f(x) is monotonically increasing in [-1,3/2] f(x) monotonically decreasing in (3/2,4) the maximum value of f(x)i s(25)/4 the minimum value of f(x) is 0

    Suppose y=f(x) and y=g(x) are two continuous functiond whose graphs intersect at the three points (0,4),(2,2) and (4,0) with f(x) gt g(x) for 0 lt x lt 2 and f(x) lt g(x) for 2 lt x lt 4 . If int_0^4[f(x)-g(x)]dx=10 and int_2^4[g(x)-f(x)]dx=5 the area between two curves for 0 lt x lt 2 ,is (A) 5 (B) 10 (C) 15 (D) 20

    Let f(x)={:{(x+1,x gt 0),(x-1,x lt 0):}

    Let f(x) = {{:(0", if ",x lt 0),(x^(2) ", if ",0 le x lt 2),(4", if ",x ge 2):} . Graph the function. Show that f(x) continuous on (-oo, oo) .