Home
Class 12
MATHS
If IK=int1^e(1nx)^kdx(k in I^+)dx(k in ...

If `I_K=int_1^e(1nx)^kdx(k in I^+)dx(k in I^+),` then find the value of `I_4dot`

Text Solution

Verified by Experts

The correct Answer is:
`9e-24`

`I_(k)=int_(1)^(e)(Inx)^(k)dx=|x(Inx)^(k)|_(1)^(e)-k int_(1)^(e)(Inx)^(k-1)dx`
or `I_(k)=e-kI_(k-1)`
or `I_(4)=e-4I_(3)`
`=e-4(e-3)(e-3)(e-2I_(1))`
`=9e-24 ( :' I_(1)=1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_K=int_1^e(lnx)^kdx(k in I^+)dx(k in I^+), then find the value of I_4dot

If int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k , then find the value of k.

If |z|lt=4 , then find the maximum value of |i z+3-4i|dot

Find the real part of (1-i)^(-i)dot

The position vectors of the point A ,B ,Ca n dDa r e3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and 4 hat i+5 hat j+lambda hat k , respectively. If the points A ,B ,Ca n dD lie on a plane, find the value of lambdadot

IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

IfI_1=int_0^1 2^x^3 dx,I_2=int_0^1 2^x^2 dx ,I_3=int_1^2 2^x^2dx ,I_4=int_1^2 2^x^3dx , then which of the following is/are ture? I_1> I_2 (b) I_2> I_2 I_3> I_4 (d) I_3

IfI_1=int_0^1 2^(x^2) ,I_2=int_0^1 2^(x^3)dx ,I_3=int_1^2 2^(x^2)dx ,I_4=int_1^2 2^(x^3)dx , then which of the following is/are true? I_1> I_2 (b) I_2> I_1 I_3> I_4 (d) I_3 lt I_4

If f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta ,then find the value of (l_(1))/(l_(2)) .