Home
Class 12
MATHS
Of the three independent event E(1),E(2)...

Of the three independent event `E_(1),E_(2)` and `E_(3)`, the probability that only `E_(1)` occurs is `alpha`, only `E_(2)` occurs is `beta` and only `E_(3)` occurs is `gamma`. If the probavvility p that none of events `E_(1), E_(2)` or `E_(3)` occurs satisfy the equations `(alpha - 2beta)p = alpha beta` and `(beta - 3 gamma) p = 2 beta gamma`. All the given probabilities are assumed to lie in the interval (0, 1). Then, `("probability of occurrence of " E_(1))/("probability of occurrence of " E_(3))` is equal to

Text Solution

Verified by Experts

Let `P(E_(1))=x,P(E_(2))=y and P(E_(3))=z,then`
`(1-x)(1-y)(1-z)=p`
`x(1-y)(1-z)=alpha,`
`(1-x)y(1-z)=beta,`
`(1-x)(1-y)(z)=gamma`
`So, (1-x)/(x)=(p)/(alpha)=x=(alpha)/(alpha+p),`
Similarly, `z=(gamma)/(gamma+p).`
So, `(P(E_(1)))/(P(E_(3)))=((alpha)/(alpha+p))/(gamma/gamma+p)=((gamma+p)/(gamma))/((alpha+p)/(alpha))=(a+p/gamma)/(1+(p)/(alpha))`
Also given `(alphabeta)/(alpha-2beta)=p=(2betagamma)/(beta=3gamma)impliesbeta=(5alphagamma)/(alpha+4gamma)`
Substituting in given relation
`(alpha-2((5alpha gamma)/(alpha+4gamma)))p=(alphaxx5alphagamma)/(alpha+4gamma)`
`or ((p)/(gamma)+1)=6((p)/(alpha)+1)`
`or ((p)/(gamma+1))/((p)/(alpha)+1)=6.`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROBABILITY II

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • PROBABILITY I

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos