Home
Class 12
MATHS
The integral ∫(dx/(5 + 4cosx)) is equal ...

The integral `∫(dx/(5 + 4cosx))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`a to p,q; b to r,s; c to p; d to p,q`

a. `" Let " I=int(2^(x))/(sqrt(1-4^(x)))dx=(1)/(log2)int(1)/(sqrt(1^(2)-t^(2)))dt`
`"Putting "2^(x)=t, 2^(x)log2dx=dt, " we get "`
`I=(1)/(log2)sin^(-1)((t)/(1))+C=(1)/(log 2)sin^(-1)(2^(x))+C`
` :. k=(1)/(log2)`
b. ` int(dx)/((sqrt(x))^(2)+(sqrt(x))^(7))=int(dx)/((sqrt(x))^(7)(1+(1)/((sqrt(x))^(5))))`
`"Put " (1)/((sqrt(x))^(5))=y, (dy)/(dx)=-(5)/(2(sqrt(x))^(7))`
` :. I=int(-2dy)/(5(1+y))=-(2)/(5)In|1+y|+C=(2)/(5)In((1)/(1+(1)/((sqrt(x))^(5))))`
` :. a=(2)/(5), k=(5)/(2)`
c. Add and subtract ` 2x^(2)` in the numerator. Then `k=1` and ` m=1 `
d. `I=int(dx)/(5+4cosx)`
`=int(dx)/(5("sin"^(2)(x)/(2)+"cos"^(2)(x)/(2))+4("cos"^(2)(x)/(2)-"sin"^(2)(x)/(2)))`
`=int(dx)/(9"cos"^(2)(x)/(2)+"sin"^(2)(x)/(2))=int("sec"^(2)(x)/(2))/(9+"tan"^(2)(x)/(2))dx`
`"Let " t="tan"(x)/(2) " or " 2dt="sec"^(2)(x)/(2)dx`
` :. I=int(2dt)/(9+t^(2))=(2)/(3)"tan"^(-1)((t)/(3))+C`
`=(2)/(3)"tan"^(-1)(("tan"((x)/(2)))/(3))+C`
` :. k=(2)/(3), m=(1)/(3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

int(In(tanx))/(sinx cosx)dx " is equal to "

Knowledge Check

  • The value of int_(0)^(pi) (dx)/(1+5^(cosx)) is :

    A
    `(pi)/(2)`
    B
    `pi`
    C
    `(3pi)/(2)`
    D
    `2pi`.
  • The value of int_(0)^(pi) (dx)/(1+5cosx) is ……………….. .

    A
    `(pi)/(2) `
    B
    `pi`
    C
    `(3pi)/(2)`
    D
    `2pi`
  • Similar Questions

    Explore conceptually related problems

    The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

    Consider the integral int_0^(2pi)(dx)/(5-2cosx) making the substitution tan(x/2)=t , we have I=int_0^(2pi)(dx)/(5-2cosx) =int_0^0(2dt)/((1+t^2)[5-2(1-t^2)/(1+t^2)])=0 The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

    The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

    If y=cos^(-1)(cosx),t h e n(dy)/(dx) at x= (5pi)/4 is equal to (a)1 (b)-1 (c)0 (d)4

    The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    The value of int_(0)^(pi)dx/(1+5^(cosx)) is :