Home
Class 12
MATHS
int (sec^(2)x)/((secx + tanx)^(9//2))dx ...

`int (sec^(2)x)/((secx + tanx)^(9//2))dx` equal to (for some arbitrary constant K)

A

`-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

B

`(1)/((secx+tanx)^(1//11)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

C

`-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

D

`(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(sec^(2)x)/((secx+tanx)^(9//2))dx`
Let ` sec x +tanx=t`
` or sec x -tan x=1//t`
Now, `(secx tanx+sec^(2)x)dx =dt`
`or secx(secx+tanx)dx=dt`
` or secx dx=(dt)/(t),(1)/(2)(t+(1)/(t))=sec x`
` :. I=(1)/(2)int ((t+(1)/(t)))/(t^(9//2))(dt)/(t)`
`=(1)/(2)int(t^(-9//2)+t^(-13//2))dt`
`=(1)/(2)[(t^(-9//2+1))/(-(9)/(2)+1)+(t^(-13//2+1))/(-(13)/(2)+1)]+K`
`=(1)/(2)[(t^(-7//2))/(-(7)/(2))+(t^(-11//2))/(-(11)/(2))]+K`
`= -(1)/(7) t^(-7//2)-(1)/(11)t^(-11//2)+K`
`= -(1)/(7) (1)/(t^(7//2))-(1)/(11)(1)/(t^(11//2))+K`
`= -(1)/(t^(11//2))((1)/(11)+(t^(2))/(7))+K`
`= -(1)/((secx+tan x)^(11//2)){(1)/(11)+(1)/(7)(sec x+tanx)^(2)}+K`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

Evaluate int(sec^(2)x)/(5+tanx)dx

Knowledge Check

  • int (sec^(2))/(tan^(2) x-1)dx

    A
    `2 log |1-tanx|/(|tan x -1|)+c`
    B
    `"log " |1+tanx|/(|tan x -1|)+c`
    C
    `(1)/(2) "log " |tanx+1|/(|tan x -1|)+c`
    D
    `(1)/(2) "log" |tanx-1|/(|tan x +1|)+c`
  • int2x.e^(x^(2))dx equal to

    A
    `-e^(x^(2))+C`
    B
    `e^(x^(2))+C`
    C
    `e^(x)+C`
    D
    `-e^(x)+C`
  • int (sec^(2) x)/( tan^(2) x - 1) dx is

    A
    ` 2 log | (1 - tan x)/( 1 + tan x )| + c `
    B
    ` log | (1 + tan x)/( 1 - tan x )| + c `
    C
    ` log | (1 + tan x)/( 1 - tan x )| + c `
    D
    ` (1)/(2) log | (tan x - 1)/( tan x + 1 )| + c ` a
  • Similar Questions

    Explore conceptually related problems

    The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

    If I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

    int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

    int_(1)^(2)x^(2)dx is equal to

    inte^(x)secx(1+tanx)dx equals