Home
Class 12
MATHS
For a regular polygon, let r and R be th...

For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with `r/R=1/(sqrt(2))` (17) There is a regular polygon with `r/R=2/3` (30) There is a regular polygon with `r/R=(sqrt(3))/2` (47) There is a regular polygon with `r/R=1/2` (60)

A

There is a regular polygon with `(r)/(R) = (sqrt3)/(2)`

B

There is a regular polygon with `(r)/(R) = (1)/(2)`

C

There is a regular polygon with `(r)/(R) = (1)/(sqrt2)`

D

There is a regular polygon with `(r)/(R) = (2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`r = (a)/(2) "cot"(pi)/(n) and R = (a)/(2) "cosec"(pi)/(n)`
`:. (r)/(R) = ("cot"(pi)/(n))/("cosec"(pi)/(n)) = "cos"(pi)/(n)`

`:. "cos" (pi)/(n) != (2)/(3) " for any " n in N`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Numerical)|22 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Prove that the area of a regular polygon hawing 2n sides, inscribed in a circle, is the geometric mean of the areas of the inscribed and circumscribed polygons of n sides.

The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is 3:4. Then the value of n is

Knowledge Check

  • the sum of the radii of inscribed and circumscribed circules for an n sides regular polygon of side a, is

    A
    `a/2 cot ((pi)/(2 n))`
    B
    `a cot ((pi)/(2 n))`
    C
    `a/4 cot ""((pi)/(2n))`
    D
    `a cot "" ((pi)/( n))`
  • The number of triangles which can be formed by using the vertices of a regular polygon of (n + 3) sides is 220. Then n =

    A
    8
    B
    9
    C
    10
    D
    11
  • Similar Questions

    Explore conceptually related problems

    A piece of paper is in the shape of a square of side 1m long. It is cut at the four corners to make a regular polygon of eight sides (octagon). The area of the polygon is

    The largest area of the trapezium inscribed in a semi-circle or radius R , if the lower base is on the diameter, is (a) (3sqrt(3))/4R^2 (b) (sqrt(3))/2R^2 (c) (3sqrt(3))/8R^2 (d) R^2

    A regular polygon of 10 sides is constructed. In how many way can 3 vertices be selected so that no two vertices are consecutive?

    Prove that the distance between the circumcenter and the incenter of triangle ABC is sqrt(R^2-2R r)

    Prove that the distance between the circumcenter and the incenter of triangle ABC is sqrt(R^2-2R r)

    Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6sqrt3r .