Home
Class 12
MATHS
Let us consider the equation cos^4x/a+si...

Let us consider the equation `cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0`
The value of `sin^2x` in terms of a and b is

A

`sin^4x/b=cos^4x/a`

B

`sinx/a=cosx/b`

C

`sin^4x/b^2=cos^4x/a^2`

D

`sin^2x/a=cos^2x/b`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `cos^4x/a+sin^4x/b=1/(a+b)=(cos^2x+sin^2x)/(a+b)`
`rArr cos^2x(cos^2x/a-1/(a+b))=sin^2x(1/(a+b)-sin^2x/b)`
`rArrcos^2x((bcos^2x-asin^2x)/(a(a+b)))=sin^2x((bcos^2x-asin^2x)/(b(a+b)))`
`rArrcos^2x/a=sin^2x/b`
`rArr(1-sin^2x)/a=sin^2x/b`
`rArr sin^2x=b/(a+b)and cos^2x=a/(a+b)`
`:. sin^8x/b^3+cos^8x/a^3=b^3/(b^3(a+b)^4)+a^4/(a^3(a+b)^4)=1/((a+b)^3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sin^2 x - 5 sin x + 4 = 0

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

Let A=sinx+cosxdot Then find the value of sin^4x+cos^4x in terms of Adot

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at least one solution, then the value of (a+b) can be (a) (7pi)/2 (b) (5pi)/2 (c) (9pi)/2 (d) none of these

The number of roots of the equation sin(2x+pi/18) cos(2x-pi/9)=-1/4 in [0, 2pi] is

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is