Home
Class 12
MATHS
If a,b,x,y are real number and x,y gt 0,...

If `a,b,x,y` are real number and `x,y gt 0`, then `(a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y)` so on solving it we have `(ay-bx)^(2) ge 0`.
Similarly, we can extend the inequality to three pairs of numbers, i.e,
`(a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z)`
Now use this result to solve the following questions.
The value of `(a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c)` is

A

` ge (a+b+c)`

B

`ge (1)/(2)(a+b+c)`

C

`(3)/(2) le (a+b+c)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c)`
`=(a^(2))/(a+b)+(b^(2))/(b+c)+(c^(2))/(a+c)+(b^(2))/(a+b)+(c^(2))/(b+c)+(a^(2))/(a+c)`
`ge ((2a+2b+2c)^(2))/(4(a+b+c)) ge (a+b+c)`
`implies(a^(2))/(a+b)+(b^(2))/(b+c)+(c^(2))/(a+c)+(b^(2))/(a+b)+(c^(2))/(b+c)+(a^(2))/(a+c) ge a+b+c`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. If abc=1 , then the minimum value of (1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b)) is

Solve the given pair of linear equations (a-b)x+(a+b)y = a^2 - 2ab - b^2

Knowledge Check

  • If x,y,a,b,c,d are real and x+iy= sqrt((a+ib)/(c+id))" then "(x^(2)+y^(2))^(2)=

    A
    `(a^(2)+b^(2))/(c^(2)+d^(2))`
    B
    `(a^(2)-b^(2))/(c^(2)-d^(2))`
    C
    `(a^(2)-c^(2))/(b^(2)-d^(2))`
    D
    `(a^(2)+b^(2))/((c+d)^2)`
  • Similar Questions

    Explore conceptually related problems

    Sketch the regions satisfying the following inequalities: (a) x gt 2 (b) |y| ge 1

    The value of |{:(x^(2)+y^(2),ax+by,x+y),(ax+by,a^(2)+b^(2),a+b),(x+y,a+b,2):}| depends on

    If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

    If a x^(2)+b x+c=0 and b x^(2)+c x+a=0, a, b, c ne 0 have a common root, then value of ((a^(3)+b^(3)+c^(3))/(a b c))^(2) is

    If x=c y+b z ,y=a z+c x ,z=bx+a y ,w h e r ex ,y ,z are not all zeros, then find the value of a^2+b^2+c^2+2a b c dot

    Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

    If x = a cosec θ, y = b cot θ, then the value of (x^2/a^2)−(y^2/b^2) = ………………..