Home
Class 12
MATHS
Prove that (1)/(a) + (1)/(b) + (1)/(c ) ...

Prove that `(1)/(a) + (1)/(b) + (1)/(c ) ge (1)/(sqrt((bc))) + (1)/(sqrt((ca))) + (1)/(sqrt((ab)))`, where a,b,c `gt` 0

Text Solution

Verified by Experts

`(1)/(b)+(1)/(c) ge 2[(1)/(b)(1)/(c)]^(1///2)`
`(1)/(a)+(1)/(b) ge 2[(1)/(a)(1)/(b)]^(1//2)`
`(1)/(a)+(1)/(c) ge 2 [(1)/(a)(1)/(c)]^(1//2)`
Adding, we get
`(1)/(a)+(1)/(b)+(1)/(c)ge (1)/(sqrt(bc))+(1)/(sqrt(bc))+(1)/(sqrt(ab))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(1,,ab,,(1)/(a)+(1)/(b)),(1 ,,bc,,(1)/(b)+(1)/(c)),( 1,, ca,,(1)/(c)+(1)/(a)):}|=0

3 circles of radii a,b,c (a

Prove that x^((b-c)/(bc)) x^((c-a)/(ca)) x^((a-b)/(ab))=1

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

If a,b,c be positive real numbers and the value of theta=tan^(- 1)sqrt((a(a+b+c))/(b c))+tan^(- 1)sqrt((b(a+b+c))/(c a)) + tan^-1sqrt((c(a+b+a))/((ab)) then tan theta is equal to

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Tangents are drawn to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,(a > b), and the circle x^2+y^2=a^2 at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) tan^(-1)((a-b)/(2sqrt(a b))) (B) tan^(-1)((a+b)/(2sqrt(a b))) (C) tan^(-1)((2a b)/(sqrt(a-b))) (D) tan^(-1)((2a b)/(sqrt(a+b)))

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0