Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then

A

`A^(3)-A^(2)=A-I`

B

`Det(A^(2010)-I)=0`

C

`A^(50)=[{:(1,0,0),(25,1,0),(25,0,1):}]`

D

`A^(50)=[{:(1,1,0),(25,1,0),(25,0,1):}]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`(a,b,c)` `A^(2)=[{:(1,0,0),(1,0,1),(0,1,0):}][{:(1,0,0),(1,0,1),(0,1,0):}]=[{:(1,0,0),(1,1,0),(1,0,1):}]`
`A^(3)=[{:(1,0,0),(1,1,0),(1,0,1):}][{:(1,0,0),(1,1,0),(1,0,1):}]=[{:(1,0,0),(2,0,1),(1,1,0):}]`
`A^(3)-A^(2)=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`and `A-I=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`
`impliesA^(3)-A^(2)=A-I` and det `(A-I)=0`
`impliesDet|A^(n)-I)=Det((A-I)(1+A+A^(2)+...+A^(n-1)))`
`=Det(A-I)Det(1+A+A^(2)+....+A^(n-1))=0`
`A^(3)-A^(2)=A-I` ...........`(i)`
`impliesA^(4)-A^(3)=A^(2)-A`..........`(ii)`
`impliesA^(5)-A^(4)=A^(3)-A^(2)=A-I` (Using `(1)`)
If `n` is even `A^(n)-A^(n-1)=A^(2)-A`...........`(iii)`
If `n` is odd `A^(n)-A^(n-1)=A-I`..........`(iv)`
Consider `n` is even
`:.A^(n)-A^(n-1)=A^(2)-A`(Using `(iii)`)
`A^(n-1)-A^(n-2)=A-I` (Using `(iv)`)
On adding, we get
`A^(n)-A^(n-2)=A^(2)-I`
`impliesA^(n)-A^(n-2)+A^(2)-I`
`=A^(n-4)+A^(2)-I)+A^(2)-I`
`=(A^(n-6)+A^(2)-I)+2(^(2)-I)`
`=(A^(2))+(n-2)/(2)(A^(2)-I)`
`A^(n)=((n)/(2))A^(2)-((n-2)/(2))I`
`:.A^(50)=25A^(2)-24I`
`=25[{:(1,0,0),(1,1,0),(1,0,1):}]-24[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(1,0,0),(25,1,0),(25,0,1):}]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-3I)

If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

Knowledge Check

  • If A=|{:(8,0,0),(0,-1,0),(0,0,1):}| then A is:

    A
    Scalar matrix
    B
    Diagonal matrix
    C
    Unit matrix
    D
    Row matrix
  • Similar Questions

    Explore conceptually related problems

    If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

    Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

    Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

    Let A =({:(1,0,1,0),(0,1,0,1),(1,0,0,1):}) , B=({:(0,1,0,1),(1,0,1,0),(1,0,0,1):}) C=({:(1,1,0,1),(0,1,1,0),(1,1,1,1):}) by any three boolean matrices of the same type. Find (i) A vee B , (ii) A wedge B , (iii) (A vee A) wedge C , (iv) (A wedge B) vee C .

    Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    If A = [(0,1,1),(1,0,1),(1,1,0)] show that A^(-1) =(1)/(2) (A^(2)=3I).

    If A=[(0,1,1),(1,0,1),(1,1,0)] show that A^(-1)=1/2(A^(2)-3I) .