Home
Class 12
MATHS
If hat a and hat b are unit vectors in...

If `hat a` and `hat b` are unit vectors inclined at an angle θ then prove that : `tan (θ/2) =|hat a + hat b|/ |hat a − hatb|`

Text Solution

Verified by Experts

The correct Answer is:
A

`(fogogof) (x)= sin^(2) (sin x^(2))`
`(gogof) (x) = sin (sin x^(2))`
`:. Sin^(2) (sin x^(2))= sin (sin x^(2))`
`rArr sin (sin x^(2)) [sin (sin x^(2))-1]=0`
`rArr sin (sin x^(2))=0` or `1`
`rArr sin x^(2) = npi` or `2 mpi+pi//2`, where `m, n in I`
`rArr sin x^(2)=0`
`rArr x^(2) =n pi rArr x= pm sqrt(npi), n in {0, 1, 2, ...}`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If hat a , hat b ,a n d hat c are unit vectors, then | hat a- hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .

Knowledge Check

  • The unit vector in the direction of the sum of vectors hat i + hat j + hat k and 2 hat i + 3 hat j + 4 hat k is

    A
    `(1)/(5sqrt2)(3 hat i + 4 hat j + 5 hat k)`
    B
    `(1)/(5 sqrt2)(3 hat i - 4 hat j - 5 hat k)`
    C
    `(1)/(2 sqrt2)(4 hat i + 3 hat j + 5 hat k)`
    D
    `(1)/(3sqrt2(-3 hat k + 4 hat i + 5 hat j)`
  • Similar Questions

    Explore conceptually related problems

    Let two non-collinear unit vector hat a a n d hat b form an acute angle. A point P moves so that at any time t , the position vector O P(w h e r eO is the origin ) is given by hat acost+ hat bsintdotW h e nP is farthest from origin O , let M be the length of O Pa n d hat u be the unit vector along O Pdot Then (a) hat u=( hat a+ hat b)/(| hat a+ hat b|)a n dM=(1+ hat adot hat b)^(1//2) (b) hat u=( hat a- hat b)/(| hat a- hat b|)a n dM=(1+ hat adot hat )^(1//2) (c) hat u=( hat a+ hat b)/(| hat a+ hat b|)a n dM=(1+2 hat adot hat b)^(1//2) (d) hat u=( hat a- hat b)/(| hat a- hat b|)a n dM=(1+2 hat adot hat b)^(1//2)

    Find a unit vector in the direction of the vector vec a = 2 hat i + 2 hat j + hat k .

    Find the unit vector in the direction of the vector vec a = -hat i + 2hat j + 2 hat k .

    If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2a n dtheta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2,a n dtheta_3dot a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

    Let hat(a) , hat(b) " and " hat( c) be three unit vectors such that hat(a) xx (hat(b) xx hat( c)) = (sqrt(3))/(2)( hat(b) +hat(c )). If hat(b) is not parallel to hat( c) then the angle between hat(a) " and " hat(b) is

    (i) If vec a, vec b and vec a + vec b are unit vectors, then prove that the angle between vec a and vec b is (2pi)/(3) (ii) If (2 hat i + hat j - 3 hat k ) and (m hat i + 3 hat j - hat k) are perpendicular to each other , then find m.

    Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .