Home
Class 12
MATHS
Prove that ((n + 1)/(2))^(n) gt n!...

Prove that `((n + 1)/(2))^(n) gt n!`

Text Solution

Verified by Experts

We have
`(1+2+3+4+....+n)/(n) gt (1.2.3.4....n)^(1//n)`
`(m(n+1))/(2))/(n) gt (n!)^(1//n)`
`rArr ((n+1)/(2))^n gt n!`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 le (1+ (1)/(n))^(n) lt 3 for all n in N .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ((n^(2))!)/((n!)^(n)) is a natural number for all n in N.

Prove that (1+x)^(n) ge (1+nx) for all natural number n where x gt -1

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-1))), n in N .

BY the principle of mathematical induction , prove that for n ge 1 1^(2) + 3^(2) + 5^(2) + ….+ ( 2n-1)^(2) = (n(2n-1) (2n+1))/3

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .