Home
Class 12
MATHS
Express =|2b c-a^2c^2b^2c^2 2c a-b^2a^2b...

Express `=|2b c-a^2c^2b^2c^2 2c a-b^2a^2b 62a^2 2a b-c^2|` as square of a determinant of hence evaluate if.

Text Solution

Verified by Experts

The correct Answer is:
`[3abc-a^(2)-b^(3)-c^(3)]^(2)`

The given determinants is
`|{:(a,, b,,c),(b,,c,,a),(c,,a,,b):}| xx |{:(-a,,c,,b),(-b,,a,,c),(-c,,b,,a):}|=Delta `[row by row multiplication]
Therefore
`Delta = |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}||{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|=|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|^(2)`
`=[a(bc-a^(2))+b(ac-b^(2))+c(ab-c)^(2))]^(2)`
`=[3abc -a^(3)-b^(3)-c^(3)]^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos

Similar Questions

Explore conceptually related problems

The value of determinant |b c-a^2a c-b^2a b-c^2a c-b^2a b-c^2b c-a^2a b-c^2b c-a^2a c-b^2| is a. always positive b. always negative c. always zero d. cannot say anything

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .

Knowledge Check

  • If the expression a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2) is a perfect square, then a,b,c are in

    A
    AP
    B
    HP
    C
    GP
    D
    Both AP and GP
  • Similar Questions

    Explore conceptually related problems

    Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, and C=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

    If a ,b ,c are non zero (a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 are rational.

    Show that |{:( 2bc-a^2 , c^2 ,b^2),(c^2 , 2ca-b^2 , a^2),(b^2 , a^2 , 2ab-c^2):}| = |{:(a,b,c),(b,c,a),(c,a,b):}|^2

    If =|[a b c, b^2c,c^2b],[ a b c,c^2a, c a^2],[a b c, a^2b,b^2a]|=0,(a ,b ,c in R) and are all different and nonzero), then prove that a+b+c=0.

    If |a^2b^2c^2(a+1)^2(b+1)^2(c+1)^2(a-1)^2(b-1)^2(c-1)^2|=k(a-b)(b-c)(c-a), then find the value of kdot

    Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

    If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these