Home
Class 12
MATHS
the value of Sigma(r=2)^(n) (-2)^(r ) ...

the value of `Sigma_(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C_(r-2),,""^(n-2)C_(r-1),,""^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)`

A

`2n -1+(-1)^(n)`

B

`2n+1+(-1)^(n-1)`

C

`2n-3+(-1)^(n)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Applying `c_(1) to C_(1) +2C_(2)+C_(3)` we get
`S=overset(n)underset(r=2)(Sigma)(-2)^(r ) |{:(.^(n)C_(r),,.^(n-2)C_(r-1),,.^(n-2)C_(r )),(0,,1,,1),(0,,-1,,0):}|`
`=overset(n)underset(r=2)(Sigma) (-2)^(rn)C_(r ) =overset(n)underset(r=0)(Sigma) (-2)^(r " " n)C_(r )-(.^(n)C_(0)-2.^(n)C_(1))`
`=(1-2)^(n)-(1-2n) =2n-1+(-1)^(n)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Knowledge Check

  • .^((n-1)C_(r) + ^((n-1)) C_((r-1)) is

    A
    `.^(n+1)C_(r)`
    B
    `.^((n-1))C_(r)`
    C
    `.^(n)C_(r)`
    D
    `.^(n)C_(r-1)`
  • """.^(n-1)C_r + """.^(n-1)C_(r-1) is …………. .

    A
    `""^(n+1)C_r`
    B
    `""^(n-1)C_r`
    C
    `""^nC_r`
    D
    `""^nC_(r-1)`
  • Similar Questions

    Explore conceptually related problems

    The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

    If ""^(nP_(r)=""^(n)P_(r+1) and ""^(n)C_(r)=""^(n)C_(r-1) find n and r.

    If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to

    The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

    The sum of series Sigma_(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)