Home
Class 12
MATHS
Find the magnitude of vec(a) given by ve...

Find the magnitude of `vec(a)` given by `vec(a) = (hat(i) + 3hat(j) - 2hat(k)) xx (-hat(i) + 3hat(k))`.

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(91)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part III Vector (or Cross) Product of Two Vectors) Short Answer Type Questions|13 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part IV Vector (or Cross) Product of Two Vectors) Very Short Answer Type Questions|5 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part II Scalar (or dot) Product of Two Vectors) Long Answer Type Questions|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Answer all questions ( d) Find the magnitude of overset(to)(a) given by overset(to)(a) = (hat(i) + 3 hat(j) - 2 hat(k) ) xx ( - hat(i) + 3 hat(k) ) .

Answer all questions ( d) Find the magnitude of overset(to)(a) given by overset(to)(a) = (hat(i) + 3 hat(j) - 2 hat(k) ) xx ( - hat(i) + 3 hat(k) ) .

Find the volume of a parallelopiped whose sides are given by vec(a) = -2hat(i) + 3hat(j) + hat(k), vec(b) = hat(i) - 2hat(j) + 2hat(k) and vec(c) = -hat(i) + 2hat(j) + 3hat(k) .

Find the value of lambda , if the vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lambda hat(j) + 5hat(k) are coplanar.

Find the sum of the vectors vec(a) = hat(i) - 2hat(j) + hat(k), vec(b) = -2hat(i) + 4hat(j) + 5hat(k) and vec(c) = hat(i) - 6hat(j) - 7hat(k) .

Find vec(a).vec(b) if vec(a) = -hat(i) + hat(j) - 2hat(k) and vec(b) = 2hat(i) + 3hat(j) - hat(k) .

Find vec(a).(vec(b) xx vec(c)) , if vec(a) = 2hat(i) + hat(j) + 3hat(k), vec(b) = -hat(i) + 2hat(j) + hat(k) and vec(c) = 3hat(i) + hat(j) + 2hat(k) .

Find a vector vec(b) such that vec(a) xx vec(b) = vec(c) and vec(a).vec(b) = 3 , where vec(a) = hat(i) + hat(j) + hat(k), vec(c) = hat(j) - hat(k) .

Write the value of p for which vec(a) = 3hat(i) + 2hat(j) + 9hat(k) vec(b) = hat(i) + p hat(j) + 3hat(k) are parallel vectors.

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec(a) - vec(b) , where vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) + 2hat(j) + 3hat(k) .