Home
Class 12
MATHS
Find a vector vec(b) such that vec(a) xx...

Find a vector `vec(b)` such that `vec(a) xx vec(b) = vec(c)` and `vec(a).vec(b) = 3`, where `vec(a) = hat(i) + hat(j) + hat(k), vec(c) = hat(j) - hat(k)`.

Text Solution

Verified by Experts

The correct Answer is:
`(5)/(3)hat(i) + (2)/(3)hat(j) + (2)/(3)hat(k)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part IV Vector (or Cross) Product of Two Vectors) Very Short Answer Type Questions|5 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part IV Vector (or Cross) Product of Two Vectors) Short Answer Type Questions|8 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Questions for Practice (Part III Vector (or Cross) Product of Two Vectors) Very Short Answer Type Questions|7 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Find a vector vec(b) such that vec(a)xxvec(b)=vec(c) and vec(a)*vec(b)=3 where vec(a)=hat(i)+hat(j)+hat(k),vec(c)=hat(j)-hat(k) .

Find vec(a).vec(b) if vec(a) = -hat(i) + hat(j) - 2hat(k) and vec(b) = 2hat(i) + 3hat(j) - hat(k) .

Find (vec(a) + 2vec(b)).(3 vec(a) - vec(b)) , if vec(a) = hat(i) + hat(j) + 2hat(k) and vec(b) = 3hat(i) + 2hat(j) - hat(k) .

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec(a) - vec(b) , where vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) + 2hat(j) + 3hat(k) .

Find a unit vector perpendicular to each of the vectors vec(a)+vec(b) and vec(a)-vec(b) , where vec(a)=hat(i)+hat(j)+hat(k) and vec(b)=hat(i)+2hat(j)+3hat(k) .

Write the direction ratio's of the vector 3vec(a) + 2vec(b) where vec(a) = hat(i) + hat(j) - 2hat(k) and vec(b) = 2hat(i) - 4hat(j) + 5hat(k) .

Find the projection of vec(b) + vec(c) on vec(a) , where vec(a) = 2hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 2hat(k) and vec(c) = 2hat(i) - hat(j) + 4hat(k) .

Find ]vec(a)vec(b)vec(c)] , when vec(a) = 2hat(i) - 3hat(j) + 4hat(k) , vec(b) = hat(i) + 2hat(j) - hat(k) and vec(c) = 3hat(i) - hat(j) + 2hat(k) .

Find vec(a).(vec(b) xx vec(c)) , if vec(a) = 2hat(i) + hat(j) + 3hat(k), vec(b) = -hat(i) + 2hat(j) + hat(k) and vec(c) = 3hat(i) + hat(j) + 2hat(k) .

Find the magnitude of vec(a) given by vec(a) = (hat(i) + 3hat(j) - 2hat(k)) xx (-hat(i) + 3hat(k)) .