Home
Class 12
MATHS
Show that sin^(-1)sqrt(frac[x-q][p-q])=c...

Show that `sin^(-1)sqrt(frac[x-q][p-q])=cos^(-1)sqrt(frac[p-x][p-q])=cot^(-1)sqrt(frac[p-x][x-q])`

Text Solution

Verified by Experts

The correct Answer is:
`cot^(-1)sqrt((p-x)/(x-q))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHSE ODISHA EXAMINATION PAPER - 2018

    ARIHANT PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS (ANSWER ANY THREE QUESTIONS)|38 Videos
  • AREA UNDER PLANE CURVES

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (LONG ANWER TYPE QUESTIONS)|15 Videos
  • CHSE ODISHA EXAMINATION PAPER 2019

    ARIHANT PUBLICATION|Exercise Group C (30 Marks) |13 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)sqrt((x-q)/(p-q))=cos^(-1)sqrt((p-x)/(p-q))=cot^(-1)sqrt((p-x)/(x-q)) .

Prove the "sin"^(-1) sqrt((x-q)/(p-q))="cos"^(-1) sqrt((p-x)/(p-q))="cot"^(-1) sqrt((p-x)/(x-q))

Knowledge Check

  • Find frac[dy][dx] if y=xcot^(-1)(frac[x][y])

    A
    1992
    B
    1996
    C
    2000
    D
    2002
  • Similar Questions

    Explore conceptually related problems

    Show that sin^(-1)frac[12][13]+cos^(-1)frac[4][5]+tan^(-1)frac[63][16]=pi

    Prove that cos^(-1)(frac[b+acosx][a+bcosx])=2tan^(-1)(sqrt(frac[a-b][a+b])tanfrac[x][2])

    Show that "tan"^(-1)sqrt(x)=1/(2)"cos"^(-1)((1-x)/(1+x)),x in[0,1] .

    Prove that sin^(-1)(frac[sqrt(1+x)+sqrt(1-x)][2])=frac[pi][4]+frac[1][2]cos^(-1)x,0ltxlt1

    Find sin[frac[pi][2]-sin^(-1)(-frac[1][2])]

    Integrate int(frac[x-1][2x+1])dx

    If sin^(-1)frac[x][5]+cosec^(-1)frac[5][4]=frac[pi][2] , then what is the value of x?