Home
Class 12
MATHS
Consider the following linear equations:...

Consider the following linear equations: `a x+b y+c z=0` `b x+c y+a z=0` `c x+a y+b z=0` Match the expression/statements in column I with expression/statements in Column II. Column I, Column II `a+b+c!=0`and `a^2+b^2+c^2=a b+b c+c a` , p. the equations represent planes meeting only at a single point `a+b+c=0a n da^2+b^2+c^2!=a b+b c+c a` , q. the equations represent the line `x=y=z` `a+b+c!=0a n da^2+b^2+c^2!=a b+b c+c a` , r. the equations represent identical planes `a+b+c!=0` and `a^2+b^2+c^2!=a b+b c+c a` , s. the equations represent the whole of the three dimensional space

Text Solution

Verified by Experts

The correct Answer is:
`a to r; b to q; c to p; d to s`

Here we have the determinant of the coefficient matrix of given equation as
`Delta = |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|`
`" "= -(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`" "= -(1)/(2)(a+b+c)[(a-b)^(2)+ (b-c)^(2)+ (c-a)^(2)]`
a. `a+b+c ne 0`
and `" "a^(2)+b^(2)+c^(2)-ab-bc-ca=0`
or `" "(a-b)^(2)+ (b-c)^(2)+ (c-a)^(2)=0`
or `" "a=b=c`
Therefore, this question represents identical planes.
b. `a+b+c=0`
and `" "a^(2)+b^(2)+c^(2)-ab-bc-ca ne 0`
This means `Delta = 0 and a, b and c` are not all equal. Therefore, all equations are not identical but have infinite solutions. Hence,
`" "ax+by= (a+b)z " "` (using `a+b+c=0`)
and `" "bx+cy= (b+c)z`
`rArr" "(b^(2)-ac)y=(b^(2)-ac)z rArr y=z`
rArr `" "ax+by +cy=0 rArr ax=ay`
`rArr" "x=y=z`
Therefore, the equations represent the line `x=y=z`.
c. `a+b+c ne 0 and a^(2)+b^(2)+c^(2)-ab-bc-ca ne 0`
`rArr" " Delta ne 0` and the equations have only trivial solution, i.e., `x=y=z=0`.
Therefore, the equations represent the planes meeting at a single point, namely origin.
d. `a+b+c=0 and a^(2)+b^(2)+c^(2)-ab-bc-ca=0`
`rArr" " a=b=c and Delta =0 rArr a=b =c =0`
`rArr" "` All equations are satisfied by all `x, y and z`.
`rArr " "` The equations represent the whole of the three-dimensional space.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES LINKED COMPREHENSION TYPE|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

If the parabola y=(a-b)x^2+(b-c)x+(c-a) touches x- axis then the line ax+by+c=0

Let a ,b ,c be real numbers with a^2+b^2+c^2=1. Show that the equation |a x-b y-c b x-a y c x+a b x+a y-a x+b y-cc y+b c x+a c y+b-a x-b y+c|=0 represents a straight line.

Knowledge Check

  • If the simultaneous linear equations a_(1)x+b_(1)y+c_(1)=0 " and " a_(2)x+b_(2)y+c_(2)=0 have only one solution, then the required condition is -

    A
    `a_(1)b_(2)=a_(2)b_(1)`
    B
    `a_(1)b_(2)=b_(1)b_(2)`
    C
    `a_(1)a_(2)=b_(1)b_(2) ne c_(1)c_(2)`
    D
    `a_(1)b_(2) ne a_(2)b_(1)`
  • Consider the equation az+b bar(z)+c=0" ""where" " "a,b,cin Z If |a|!=|b|, then z represents

    A
    a circle
    B
    straight line
    C
    one point
    D
    ellipse
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=a x^2+b x+cdot Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

    If x^2+p x+1 is a factor of the expression a x^3+b x+c , then a^2-c^2=a b b. a^2+c^2=-a b c. a^2-c^2=-a b d. none of these

    If the foot of the perpendicular from the origin to plane is P(a ,b ,c) , the equation of the plane is a. x/a=y/b=z/c=3 b. a x+b y+c z=3 c. a x+b y+c z=a^(2)+b^2+c^2 d. a x+b y+c z=a+b+c

    Match the statements/expressions given in Column I with the values given in Column II. Column I, Column II sum_(i=1)^ootan^(-1)(1/(2i^2))=1,t h e ntant= , Sides a , b , c for a triangle ABC are in A.P. and costheta_1=a/(b+c), costheta_2=b/(a+c), costheta_3=c/(a+b), then tan^(2)((theta_1)/2)+tan^2((theta_3)/2)= , 1 A line is perpendicular to x+2y+2z=0 and passes through (0,10). The perpendicular distance of this line from the origin is , (sqrt(5))/3

    Solve the equation |[a-x, c, b], [ c, b-x, a], [b, a, c-x]|=0 where a+b+c!=0.

    Consider the lines L_1:(x-1)/2=y/(-1)=(z+3)/1,L_2:(x-4)/1=(y+3)/1=(z+3)/2 and the planes P_1:7x+y+2z=3,P_2:3x+5y-6z=4. Let a x+b y+c z=d be the equation of the plane passing through the point match Column I with Column II. Column I, Column II a= , p. 13 b= , q. -3 c= , r. 1 d= , s. -2