Home
Class 12
MATHS
For x in RR - {0, 1}, let f1(x) =1/x, f2...

For `x in RR - {0, 1},` let `f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x)` be three given functions. If a function, `J(x)` satisfies `(f_2oJ_of_1)(x) = f_3(x)` then `J(x)` is equal to :

A

`f_3(x)`

B

`f_1(x)`

C

`f_2(x)`

D

`1/x f_3(x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise MCQ|92 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial satisfying f(x)f(1//x)=f(x) +f(1//x) and f(3)=28, then f(4) is equal to

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

Knowledge Check

  • If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,x ne 0 then f(x) is

    A
    a) `x^2 + 2`
    B
    b) `x^2 - 2`
    C
    c) `2 - x^2 `
    D
    d) `x^2/2`
  • If the function f be defined by f(x) =(2x +1)/(1-3x) , then f ^(-1) (x) is-

    A
    `(x-1)/(3x+2)`
    B
    `(3x+2)/(x-1)`
    C
    `(1-3x)/(2x+1)`
    D
    `(2x+1)/(1-3x)`
  • If f: RR^(+) rarr RR ^(+) is a polynomial function satisfying the functional equation f{f(x)}=6x-f(x) , then f(17) is equal to ___

    A
    17
    B
    -15
    C
    34
    D
    -34
  • Similar Questions

    Explore conceptually related problems

    If f(x)+2f(1/x)=3x,x ne0 and S={x in RR:f(x)=f(-x)}, then S

    If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

    Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

    Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)) , then h'(1) is equal to

    Given f(0)=0 and f(x)=(1)/(1-e^(-(1)/(x))) for x ne 0 . Then the function f(x) is -