Home
Class 12
MATHS
lim(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^...

`lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4`

A

exists and equals `1/(4sqrt2)`

B

does not exist

C

exists and equals `1/(2sqrt2)`

D

exists and equals `1/(2sqrt2(sqrt2+1))`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

Evaluate: lim_(xto2)(sqrt(1+sqrt(2+x))-sqrt3)/(x-2)

Knowledge Check

  • lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

    A
    1
    B
    `-1`
    C
    0
    D
    the limit does not exist
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following limits: lim_(xto0)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^(2)-1))

    The value of the limit lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1, is

    Evaluate: lim_(xrarr0)(sqrt(1+x^2)-sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

    Evaluate lim_(xtooo) x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-xsqrt(2)}.

    lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

    lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

    Evaluate lim_(xto1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1).