Home
Class 12
MATHS
Prove that 3 tan^(-1) x= {(tan^(-1) ((...

Prove that
`3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}`

Text Solution

Verified by Experts

Let `x = tan theta`, where `theta in (-pi//2, pi//2)`
`:. Tan^(-1). (3 x -x^(3))/(1 - 3x^(2)) = tan^(-1).(3 tan theta - tan^(3) theta)/(1 -3 tan^(2) theta)`
`= tan^(-1)(tan 3 theta), " where " 3 theta in (-3pi//2, 3 pi//2)`
`:. Tan^(-1).(3x - x^(3))/(1 - 3x^(2)) = {(3 theta,"if "-(pi)/(2) lt 3 theta lt (pi)/(2)),(3 theta - pi,"if " (pi)/(2) lt 3 theta lt (3pi)/(2)),(3 theta + pi,"if " -(3pi)/(2) lt 3 theta lt -(pi)/(2)):}`
Now if `-(pi)/(2) lt 3 theta lt (pi)/(2)`
`-(pi)/(2) lt 3 tan^(-1) x lt (pi)/(2)`
`rArr -(pi)/(6) lt tan^(-1) x lt (pi)/(6)`
`rArr -(1)/(sqrt3) lt x lt (1)/(sqrt3)`
Similarly, from `(pi)/(2) lt 3 theta lt (3pi)/(2)`, we get `x gt (1)/(sqrt3)`
And from `-(3pi)/(2) lt 3 theta lt -(pi)/(2)`, we get `x lt -(1)/(sqrt3)`
Thus, tan^(-1).(3x -x^(3))/(1 - 3x^(2)) = {(3 tan^(-1) x,"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(3 tan^(-1) x - pi," if " (1)/(sqrt3) lt x lt oo),(3 tan^(-1) x + pi,"if " -oo lt x lt -(1)/(sqrt3)):}`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos

Similar Questions

Explore conceptually related problems

Integrate : int tan^(-1) [(3x-x^(3))/(1-3x^(2))]dx [-(1)/(sqrt(3))lt x lt(1)/(sqrt(3))]

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

Draw the graph of y=tan^(-1)((3x-x^(3))/(1-3x^(2))) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

solve : tan ^(-1) 2x + tan ^(-1) ""3x=(pi)/(4)

Let tan ^(-1) y= tan ^(-1) x+ tan ^(-1) ""((2x)/(1-x^(2))) where |x| lt (1)/(sqrt(3)) . Then a value of y is -