Home
Class 12
MATHS
The points with position vectors vecx + ...

The points with position vectors `vecx + vecy, vecx-vecy and vecx +λ vecy` are collinear for all real values of λ.

Text Solution

Verified by Experts

The correct Answer is:
True

Let position vectors of points A, B and C be
`vecx + vecy, vecx - vecy and vecx +λvecy`, respectively.
Then `vec(AB) = (vecx - vecy ) - (vecx + vecy) = -2 vecy`
Similarly, `vec(BC) = (vecx + λ vecy) - (vecx - vecy) = (λ+1)vecy`
Clearly `vec(AB) "||" vec(BC) AA λ in R`
Hence, A, B and C are collinear `AA λ inR`
Therefore, the statement is true.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise FILL IN THE BLANKS|2 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

The points with position vectors 60hati+3hatj, 40hati-8hatj and a hati-52 hatj are collinear if -

The points with position vectors 60 i+3j ,40 i-8j ,a i-52 j are collinear if a. a=-40 b. a=40 c. a=20 d. none of these

If the points with position vectors 2hati+6hatj, hati+2hatj and m hati+10hatj are collinear, then the value of m is -

If vec(x), vec(y), vec(z) are three vectors, show that the points having positive vectors 7vec(x) - vec(z), vec(x) + 2vec(y) + 3vec(z) and -2vec(x) + 3vec(y) + 5vec(z) are collinear

If the points with position vectors 10hati+3hatj, 12 hati-5hatj and p hati+11hatj be collinear, then the value of p is -

Find |vecx| if for a unit vector, veca , (vecx-veca).(vecx+veca) =12,

Statement 1 : If three point P, Q and R have position vectors veca, vecb and vecc , respectively, and 2 veca + 3vecb - 5vecc=0 , then the point P, Q and R must be collinear. Statement 2 : If for three points A, B and C, vec(AB) = lamda vec(AC) , then points A, B and C must be collinear.

Find |vecx| , if for a unit vector veca,(vecx-veca)*(vecx+veca)=12 .

If veca is a unit vector and (vecx-veca)*(vecx+veca)=8 , then find |vecx| .