The points with position vectors `vecx + vecy, vecx-vecy and vecx +λ vecy` are collinear for all real values of λ.
Text Solution
Verified by Experts
The correct Answer is:
True
Let position vectors of points A, B and C be `vecx + vecy, vecx - vecy and vecx +λvecy`, respectively. Then `vec(AB) = (vecx - vecy ) - (vecx + vecy) = -2 vecy` Similarly, `vec(BC) = (vecx + λ vecy) - (vecx - vecy) = (λ+1)vecy` Clearly `vec(AB) "||" vec(BC) AA λ in R` Hence, A, B and C are collinear `AA λ inR` Therefore, the statement is true.
Topper's Solved these Questions
INTRODUCTION TO VECTORS
CENGAGE PUBLICATION|Exercise FILL IN THE BLANKS|2 Videos
INTEGRALS
CENGAGE PUBLICATION|Exercise All Questions|762 Videos
INVERSE TRIGONOMETRIC FUNCTIONS
CENGAGE PUBLICATION|Exercise All Questions|541 Videos
Similar Questions
Explore conceptually related problems
If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot
The points with position vectors 60hati+3hatj, 40hati-8hatj and a hati-52 hatj are collinear if -
The points with position vectors 60 i+3j ,40 i-8j ,a i-52 j are collinear if a. a=-40 b. a=40 c. a=20 d. none of these
If the points with position vectors 2hati+6hatj, hati+2hatj and m hati+10hatj are collinear, then the value of m is -
If vec(x), vec(y), vec(z) are three vectors, show that the points having positive vectors 7vec(x) - vec(z), vec(x) + 2vec(y) + 3vec(z) and -2vec(x) + 3vec(y) + 5vec(z) are collinear
If the points with position vectors 10hati+3hatj, 12 hati-5hatj and p hati+11hatj be collinear, then the value of p is -
Find |vecx| if for a unit vector, veca , (vecx-veca).(vecx+veca) =12,
Statement 1 : If three point P, Q and R have position vectors veca, vecb and vecc , respectively, and 2 veca + 3vecb - 5vecc=0 , then the point P, Q and R must be collinear. Statement 2 : If for three points A, B and C, vec(AB) = lamda vec(AC) , then points A, B and C must be collinear.
Find |vecx| , if for a unit vector veca,(vecx-veca)*(vecx+veca)=12 .
If veca is a unit vector and (vecx-veca)*(vecx+veca)=8 , then find |vecx| .
CENGAGE PUBLICATION-INTRODUCTION TO VECTORS -TRUE OR FALSE