Home
Class 12
MATHS
Prove that : cos^(-1) x + cos^(-1) ((x)/...

Prove that : `cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)`

Text Solution

Verified by Experts

The correct Answer is:
`x in [(1)/(2), 1]`

`cos^(-1) x + cos^(-1) [(x)/(2) + (1)/(2) sqrt(3 -3x^(2))] = (pi)/(3)`
`rArr cos^(-1) x + cos^(-1) [(1)/(2) x + (sqrt3)/(2) sqrt(1 -x^(2))] = (pi)/(3)`
`rArr cos^(-1) x + cos^(-1).(1)/(2) - cos^(-1) x = (pi)/(3)`
Above holds when `cos^(-1).(1)/(2) ge cos^(-1) x`
`:. x ge (1)/(2)`
`:. x in [(1)/(2), 1]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos

Similar Questions

Explore conceptually related problems

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Evaluate : cos^(-1)x+cos^(-1)[(x)/(2)+(sqrt(3-3x^(2)))/(2)]((1)/(2) le x le 1)

Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3)) + cos ^(2) (x - (pi)/(3)) = 3/2.

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x

tan ^(-1)((1)/(2) sec x) + cot^(-1)(2cos x) =(pi)/(3)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x