Home
Class 12
MATHS
Let IR be the set of real numbers andf :...

Let IR be the set of real numbers andf : IR be such that for all `x, y in IR`
`|f(x)-f(y)le|x-y|^3` Prove that f is a constant function.

Text Solution

Verified by Experts

`"We have "|f(x)-f(y)|le|x-y|^(3),xney`
`therefore" "|(f(x)-f(y))/(x-y)|le|x-y|^(2)`
`rArr" "underset(yrarrx)lim|(f(x)-f(y))/(x-y)|leunderset(yrarrx)lim|x-y|^(2)`
`rArr" "|underset(yrarrx)lim(f(x)-f(y))/(x-y)|le|underset(yrarrx)lim(x-y)^(2)|`
`rArr" "|f'(x)|le0`
`rArr" "|f'(x)|=0" "(because|f'(x)|ge0)`
`therefore" "f'(x)=0`
`rArr" "f(x)=c" (constant)"`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let RR be the set of real numbers and f: RR rarr RR be such that for all x,y inR , |f(x)-f(y)|^2le (x-y)^3 Prove that f is a constant function.

Statement 1: Let f: R -> R be a real-valued function AAx ,y in R such that |f(x)-f(y)|<=|x-y|^3 . Then f(x) is a constant function. Statement 2: If the derivative of the function w.r.t. x is zero, then function is constant.

Knowledge Check

  • Let RR be the set of real numbers and f : RR to RR be defined by f(x)=sin x, then the range of f(x) is-

    A
    `{f (x) in RR : 0 le f (x) le 1}`
    B
    `{f (x) in RR: -1 lt f (x) lt 1}`
    C
    `{f (x) in RR : -1 lt f(x) le 1}`
    D
    `{ f (x) in RR : -1 le f(x) le 1}`
  • Let R be the set of real numbers and f:R to R be defined by f(x)=x^(2)+2 , then the set f^(-1)(11 le x le 27) is -

    A
    `{x:-3 le x le 3}`
    B
    `{x:-5 le x le -3 or , 3 le x le 5}`
    C
    `{x:0 le x le 6}`
    D
    `{x:-5 le x le 5 }`
  • Let R be the set of all real numbers f:RrarrR be given by f(x)=3x^2+1 .Then the set f^(-1) , (1,6) is

    A
    `{-sqrt5/3,0,sqrt5/3}`
    B
    `{-sqrt5/3,sqrt5/3}`
    C
    `{-sqrt1/3,sqrt1/3}`
    D
    `(-sqrt5/3,sqrt5/3)`
  • Similar Questions

    Explore conceptually related problems

    Let f be a real valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_(x)^(x+8)f(t)dt is a constant function.

    Let R be the set of real numbers. Define the real function f: R to R by f(x)=x+10 and sketch the graph of this function.

    Let f be a real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_x^(x+8)f(t)dt is constant function.

    Let IR be the set of real numbers and the mapping f:IR rarr IR and g:IR rarr IR be define by f(x)=5-x^2 and g(x)=3x-4, then the value of (fog)(-1) is

    Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(xy+1)=f(x)f(y)-f(y)-x+2. Then f is