Home
Class 12
MATHS
Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/...

Let a,bgt0 and `alpha=(hati)/(a)+(4hatj)/(b)+bhatk` and `beta=bhati+ahattj+(1)/(b)hatk`, then the maximum value of `(10)/(5+alpha*beta)` is

A

1

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
A

`vecalpha.vecbeta = b/a+(4a)/(b)+1ge5`
So, `(10/(5 + vecalpha.vecbeta))_("max")=1`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha+ beta=(pi)/(3)(alpha gt 0 , beta gt 0) find the maximum value of tan alpha tan beta .

If veca=2hati + 3hatj+ 8hatk is perpendicular to vecb= 4hati-4hatj + alphahatk , then find the value of alpha

Knowledge Check

  • Let alpha, beta be such that pi lt alpha lt beta lt 3pi, if sin alpha + sin beta =- (21)/(65) and cos alpha + cos beta =(27)/(65), then the value of cos ""(alpha - beta)/(2) is-

    A
    `-(3)/(sqrt130)`
    B
    `-(6)/(65)`
    C
    `(6)/(65)`
    D
    `(3)/(sqrt130)`
  • If alpha, beta (alpha ne beta) satisfy the equation a cos theta + b sin theta=c then the value of tan ""(alpha + beta)/(2) is-

    A
    `a/b`
    B
    `b/a`
    C
    `c/b`
    D
    `b/c`
  • Let tanalpha=a/(a+1) and tan beta=1/(2a+1) then alpha+beta is

    A
    `pi/4`
    B
    `pi/3`
    C
    `pi/2`
    D
    `pi`
  • Similar Questions

    Explore conceptually related problems

    If. b sin beta = a sin (2alpha +beta) then the.value of cot(alpha+beta)/cotalpha

    If one root of the equation x^2 - ax + b = 0 be alpha and beta , then the value of (1)/(alpha) + (1)/(beta) is

    Let tan alpha = a/(a+1) and tan beta =1/(2a +1) , then alpha + beta is:

    If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha

    If sec(alpha-beta)=sqrt(2) and sin(alpha+beta)=(1)/(2) , then find the least positive values of alpha and beta .