Home
Class 12
MATHS
"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2...

`"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that "`
`f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2))`.

Text Solution

Verified by Experts

We have
`f(x)=|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|`
`therefore" "f'(x)=|{:(1,0,0),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(0,1,0),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(0,0,1):}|`
`=|{:(x+b^(2),bc),(bc,x+c^(2)):}|+|{:(x+a^(2),ac),(ac,x+c^(2)):}|+|{:(x+a^(2),ab),(ab,x+b^(2)):}|`
`=[(x+b^(2))(x+c^(2))-b^(2)c^(2)]+[(x+a^(2))(x+c^(2))-a^(2)c^(2)]`
`=3x^(2)+2x(a^(2)+b^(2)+c^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

|{:(a^2,ab,ac),(ab,b^2,bc),(ca,bc,c^2):}|= ?

The determinant |(a^(2)+10,ab, ac),(ab, b^(2)+10, bc),(ac, bc, c^(2)+10)| is

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)= (a) A (b) B (c) I (d) A^(2)+B^(2)

Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)

Show that, |{:(a^2+10,ab,ac),(ab,b^2+10,bc),(ca,bc,c^2+10):}| is divisible by 100 .

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

If x= (a/b)^((2ab)/(a^2-b^2)) , then prove that (ab)/(a^2+b^2)(x^(a/b)+x^(b/a))=(a/b)^((a^2+b^2)/(a^2-b^2)) .

If |{:(-a^2," "ab," "ac),(" "ab,-b^2," "bc),(" "ac," "bc,-c^2):}|=lambdaa^2b^2c^2, then find the value of lambda

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

If f(x)= ((a+x)/(b+x))^(a+b+2x) then prove that f'(0)= [2log(a/b)+(b^2-a^2)/(ab)](a/b)^(a+b)