Home
Class 12
MATHS
Let y be an implicit function of x def...

Let `y` be an implicit function of `x` defined by `x^(2x)-2x^xcot y-1=0.` Then `y '(1)` equals: a.`1` b. `log2` c. `-log2` d. `-1`

A

-1

B

1

C

log 2

D

-log 2

Text Solution

Verified by Experts

The correct Answer is:
A

`x^(2x)-2x^(x)cot y-1=0" (i)"`
Now at x=1,
`1-2 cot y-1=0rArrcot y =0 rArry=(pi)/(2)`
Now differentiating (i) w.r.t. x, we get
`2x^(2x)(1+log x)-2[x^(x)(-cosec^(2)y)(dy)/(dx)+cot x^(2)(1+log x)]=0`
`"Now at "(1,pi//2)`,
`2(1+log 1)-2[1(-1)((dy)/(dx))_(((1,pi//2)))+0]=0`
`rArr" "2+2((dy)/(dx))_(((1,pi//2)))=0`
`((dy)/(dx))_(((1,pi//2)))=-1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Write explicit functions of y defined by the following equations and also find the domains of definitions of the given implicit functions: x+|y|=2y (b) e^y-e^(-y)=2x (c) 10^x+10^y=10 (d) x^2-sin^(-1)y=pi/2

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Knowledge Check

  • Let y=((3^x-1)/(3^x+1))sinx+log_e(2+x),xgt-1 . Then at x=0 dy/dx equals

    A
    1
    B
    0
    C
    -1
    D
    -2
  • Similar Questions

    Explore conceptually related problems

    Let y be the solution of the differential equation x(dy)/(dx)=(y^(2))/(1-y log x) satisfying y(1)=1 then y satisfies

    Let A B C be a triangle. Let A be the point (1,2),y=x be the perpendicular bisector of A B , and x-2y+1=0 be the angle bisector of /_C . If the equation of B C is given by a x+b y-5=0 , then the value of a+b is (a) 1 (b) 2 (c) 3 (d) 4

    Domain of definition of the function f(x) = log_2 (-log_(1/2) (1+x^(-4))-1) is

    If x e^(x y)-y=sin^2x then (dy)/(dx)a tx=0 is a. 0 b. 1 c. -1 d. none of these

    If y= 3 cos (log x)+4 sin(log x) , show that x^(2)y_(2)+xy_(1)+y=0 .

    Let y = y(x) be the solution of the differential equation x dy/dx+y=xlog_ex,(xgt1)." If " 2y(2)=log_e4-1," then "y(e) is equal to

    Find the range of the following function y=log_3(log_(1//2)(x^2+4x+4))