Home
Class 12
MATHS
If sec alpha and alpha are the roots of ...

If sec `alpha and alpha` are the roots of `x^2-p x+q=0,` then (a) `p^2=q(q-2)` (b) `p^2=q(q+2)` (c)`p^2q^2=2q` (d) none of these`

Text Solution

Verified by Experts

(a) Let `z = - 1 - isqrt(3)`. Then `alpha = tan^(-1)|(b)/(a)| = tan^(-1)|(sqrt(3))/(1)| = (pi)/(3)`
Clearly, z lies in III quadrant.
Therefore, argument `theta = - (pi-alpha) = - (pi- pi//3) = (-2pi)/(3)`
(b) `z = (1+sqrt(3i))/(sqrt(3) +i) = ((1+sqrt(3i))(sqrt(3)-i))/((sqrt(3) + i)(sqrt(3) + i))`
`= (2sqrt(3) + 2i)/(4) = (sqrt(3) + i)/(2)`
`agr(z) = tan^(-1). (1)/(sqrt(3))= (pi)/(6)`
(c) `z = sin alpha + i (1-cos alpha)`
`rArr arg(z)= tan^(-1)((1-cos alpha)/(sin alpha)) = tan^(-1) ((2sin^(2)(alpha)/(2))/(2sin.(alpha)/(2)cos.(alpha)/(2)))`
`= tan^(-1) tan((alpha)/(2)) =(alpha)/(2)`
(d) `z = (1+isqrt(3))^(2) = 1-3 + 2isqrt(3) = - 2+ i(2sqrt(3))`
So, z lies in second quadrant.
`therefore arg(z) = pi - tan^(-1)|(2sqrt(3))/(-2)|`
`= pi - tan^(-1) sqrt(3) = pi - (pi)/(3) = (2pi)/(3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If sec alpha and cosec alpha are the roots of x^2-px+q=0 then prove that p^2=q(q+2)

If sec alpha and "cosec" alpha are the roots of x^(2)- px+q=0 then show that p^(2)=q(q+2)

Knowledge Check

  • If p and q are the roots of the equation x^2+px+q =0, then

    A
    p=1,q=-2
    B
    p=0,q=1
    C
    p=-2,q=0
    D
    p=-2,q=1
  • If , p , q are the roots of the equation x^(2)+px+q=0 , then

    A
    p=1,q=-2
    B
    p= 0 ,q = 1
    C
    `p=-2,q=0`
    D
    `p=-2,q=1`
  • Similar Questions

    Explore conceptually related problems

    If alphaandbeta be the roots of the equation x^(2)-px+q=0 then, (alpha^(-1)+beta^(-1))=(p)/(q) .

    If alpha,beta are the roots of a x^2+b x+c=0a n dalpha+h ,beta+h are the roots of p x^2+q x+r=0t h e n h= a. -1/2(a/b-p/q) b. (b/a-q/p) c. 1/2(b/a-q/p) d. none of these

    If p=a+bomega+comega^2 , q=b+comega+aomega^2 , and r=c+aomega+bomega^2 , where a ,b ,c!=0 and omega is the complex cube root of unity, then (a) p+q+r=a+b+c (b) p^2+q^2+r^2=a^2+b^2+c^2 (c) p^2+q^2+r^2=-2(p q+q r+r p) (d) none of these

    If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta -alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

    If the difference of the roots of the equation x^2-px+q=0 is 1, then show that p^2+4q^2= (1+2q)^2 .

    If alpha_1,alpha_2 are the roots of equation x ^2-p x+1=0a n dbeta_1,beta_2 are those of equation x^2-q x+1=0 and vector alpha_1 hat i+beta_1 hat j is parallel to alpha_2 hat i+beta_2 hat j , then p= a. +-q b. p=+-2q c. p=2q d. none of these