Home
Class 12
MATHS
If A is the area and 2s is the sum of th...

If `A` is the area and `2s` is the sum of the sides of a triangle, then `Alt=(s^2)/4` (b) `Alt=(s^2)/(3sqrt(3))` `2RsinAsinBsinC` (d) `non eoft h e s e`

A

`Ale (s^2)/(4)`

B

`Ale(s^2)/(3sqrt(3))`

C

`Alt (s^2)/(sqrt(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B

We have
`2s = a + b + c`
`A^(2) = s (s - a) (s - b)(s - c)`
Now,
`A.M. ge G.M`
`implies (s + (s - a) + (s - b) + (s - c))/(4) ge [s(s-a)(s-b)(s-c)]^(1//4)`
`implies (4s - 2s)/(4) ge [A^(2)]^(1//4)`
`implies s//2 ge A^(1//2)` or `A le s^(2)//4`
Also,
`((s - a) + (s - b) + (s - c))/(3) ge [(s - a) (s - b) (s - c)]^(1//3)`
`implies (s)/(3) ge [(A^(2))/(s)]^(1//3)`
or `(A^(2))/(s) le (s^(3))/(27)`
or `A le (s^(2))/(3sqrt(3))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Numerical value type|10 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)< a < sqrt(3) (d) non eoft h e s e

Knowledge Check

  • If in a triangle (s-a)/11=(s-b)/12=(s-c)/13, then tan^2(A/2)

    A
    44317
    B
    19/34
    C
    13/33
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The maximum area of the rectangle whose sides pass through the vertices of a given rectangle of sides a and b is (a) 2(a b) (b) 1/2(a+b)^2 (c) 1/2(a^2+b^2) (d) non eoft h e s e

    If a,b,c are the sides of a triangle and s=(a+b+c)/2 , prove that 8(s-a)(s-b)(s-c)leabc .

    The area of the loop of the curve a y^2=x^2(a-x) is 4a^2s qdotu n i t s (b) (8a^2)/(15)s qdotu n i t s (16 a^2)/9s qdotu n i t s (d) None of these

    If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

    If both the distinct roots of the equation |sinx|^2+|sinx|+b=0in[0,pi] are real, then the values of b are [-2,0] (b) (-2,0) [-2,0] (d) non eoft h e s e

    Let alt=blt=c be the lengths of the sides of a triangle. If a^2+b^2 < c^2, then prove that triangle is obtuse angled .

    If alt=3cosx+5sin(x-pi/6)lt=b for all x then (a , b) is (a) (-sqrt(19),sqrt(19)) (b) (-17 ,17) (-sqrt(21),sqrt(21)) (b) non eoft h e s e