Home
Class 12
MATHS
If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1...

If `f(x)=ax^(2)+bx+c` and `f(-1) ge -4`, `f(1) le 0` and `f(3) ge 5`, then the least value of `a` is

A

A. `1//4`

B

B. `1//8`

C

C. `1//3`

D

D. `-1//3`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `f(-1) ge -4`
`implies a-b+c ge -4`………`(i)`
`f(1) le 0`
`implies a+b+c le 0`
`implies -a-b-c ge 0`………`(ii)`
`f(3) ge 5`
and `9a+3b+c ge 5`……….`(iii)`
From `(i)+(ii) implies -2b ge -4`…….`(iv)`
From `(ii)+(iii)+(iv) implies 8a ge 1 implies age 1//8`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ax^(2)+bx+c and f(0) = 2, f(1) = 1, f(4) = 6, then find the valuse of a, b and c.

If f(x) = ax^(2) + bx + x and f(2) = 1, f(3) = 6, f(-1) = 10, then find the value of f'(1).

Knowledge Check

  • Suppose that f is differntiable for all x such that f'(x)le2 for all x, If f(1)=2 and f(4) =8 , then f(2) has the least value equal to

    A
    3
    B
    4
    C
    5
    D
    6
  • If the conditions of Rolle's theorem are satisfied by the function f(x)=x^(3)+ax^(2)+bx-5 in 1 le x le 3 with c=2+(1)/(sqrt(3)) , then the values of a and b are -

    A
    `a=-11, b=6`
    B
    `a=-6, b=11`
    C
    `a=-6,b=-11`
    D
    `a=11, b=-6`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=ax^(2)+bx+c and f(x - 1) = f(x) + 2x + 1. then find the values of a and b.

    If f(x)=ax^(2)+bx+c and f(x + 1) = f(x) + x + 1, then determine the values of a and b.

    If f(x) = ax + b and f(0) = 3, f(2) = 5, then find the value of a and b.

    Let f(x)=(bx+a)/(x+1), lim_(x to 0)f(x)=2 then the value of a is .

    Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

    If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is