Home
Class 8
MATHS
Find x, If 8^(x-2) xx (1/2)^(4-3x) = (0....

Find x, If `8^(x-2) xx (1/2)^(4-3x) = (0.0625)^(x)`

A

0

B

4

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(8^{(x-2)} \cdot \left(\frac{1}{2}\right)^{(4-3x)} = (0.0625)^{x}\), we will follow these steps: ### Step 1: Rewrite the bases in terms of powers of 2 We know that: - \(8 = 2^3\) - \(\frac{1}{2} = 2^{-1}\) - \(0.0625 = \frac{625}{10000} = \frac{25^2}{10^4} = \frac{(5^2)^2}{(10^2)^2} = \frac{5^4}{10^4} = 2^{-4}\) (since \(10^4 = 2^4 \cdot 5^4\)) Thus, we can rewrite the equation as: \[ (2^3)^{(x-2)} \cdot (2^{-1})^{(4-3x)} = (2^{-4})^{x} \] ### Step 2: Simplify the left side using the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify: \[ 2^{3(x-2)} \cdot 2^{-(4-3x)} = 2^{-4x} \] ### Step 3: Combine the powers on the left side Since the bases are the same, we can add the exponents: \[ 2^{3(x-2) - (4-3x)} = 2^{-4x} \] ### Step 4: Expand and simplify the exponent Now, let's expand the exponent on the left: \[ 3(x-2) = 3x - 6 \] So, we have: \[ 3x - 6 - 4 + 3x = 6x - 10 \] Thus, the equation becomes: \[ 2^{6x - 10} = 2^{-4x} \] ### Step 5: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal: \[ 6x - 10 = -4x \] ### Step 6: Solve for \(x\) Now, we will isolate \(x\): \[ 6x + 4x = 10 \] \[ 10x = 10 \] \[ x = 1 \] ### Final Answer Thus, the solution is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

Find x, if (3/4)^(5+2x)xx (3/4)^(11-x)= (3/4)^(8x-5)

Find x , if (8/3)^(2x+1)x(8/3)^5=(8/3)^(x+2)

Knowledge Check

  • Find x , if 8^(2-x) xx ((1)/(2))^(4-3x) = (0.0625)^(x) .

    A
    0
    B
    4
    C
    2
    D
    1
  • If x ne -1, 2 and 5, then the simplified value of {(2(x^(3) - 8))/(x^(2)-x-2) xx (x^(2) + 2x + 1)/(x^(2) - 4x - 5) div (x^(2) + 2x+4)/(3x-15)} is equal to :

    A
    `(1)/(6)`
    B
    6
    C
    `(3)/(2)`
    D
    `(2)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Find the domain of f(x)=sqrt((0.625)^(4-3x)-(1.6)^(x(x+8)))

    Find x: 2^(3x)=8^(2x+1)

    Solve the following equations for x:4^(2x)=(1)/(32)( ii) 4^(x-1)x(0.5)^(3-2x)=((1)/(8))^(x)2^(3x-7)=256

    solve for x,4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Solve the following equations: (i) 3^(x+1)=27 xx 3^4 (ii)4^(2x)=(16 3)^(-6/y)=(sqrt(8))^2 (iii) 3^(x-1) xx 5^(2y-3)=225 (iv) 8^(x+1)=16^(x+2) and, (v) (1/2)^(3+x)=(1/4)^(3y) 4^(x-1) xx (0. 5)^(3-2x)=(1/8)^x sqrt(a/b)=(b/a)^(1-2x ) , where a , b are distinct positive primes.

    If (4^(3))(4^(6))(4^(9))(4^(12))(4^(3x))=(0.0625)^(-54) the value of x is 7(b) 8(c) 9 (d) 10