Home
Class 8
MATHS
Find the value of (27)^(-2//3) + ((2^(-2...

Find the value of `(27)^(-2//3) + ((2^(-2//3))^(-5//3))^(-9//10)`

A

`1/9`

B

`2/9`

C

`11/18`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (27)^{-\frac{2}{3}} + \left( (2^{-\frac{2}{3}})^{-\frac{5}{3}} \right)^{-\frac{9}{10}} \), we will break it down step by step. ### Step 1: Simplify \( 27^{-\frac{2}{3}} \) First, we recognize that \( 27 \) can be expressed as \( 3^3 \): \[ 27 = 3^3 \] Thus, we can rewrite the expression: \[ (27)^{-\frac{2}{3}} = (3^3)^{-\frac{2}{3}} \] Using the power of a power property \( (a^m)^n = a^{m \cdot n} \): \[ (3^3)^{-\frac{2}{3}} = 3^{3 \cdot -\frac{2}{3}} = 3^{-2} \] ### Step 2: Calculate \( 3^{-2} \) Now we compute \( 3^{-2} \): \[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \] ### Step 3: Simplify \( \left( (2^{-\frac{2}{3}})^{-\frac{5}{3}} \right)^{-\frac{9}{10}} \) Next, we simplify the second part of the expression: \[ (2^{-\frac{2}{3}})^{-\frac{5}{3}} = 2^{-\frac{2}{3} \cdot -\frac{5}{3}} = 2^{\frac{10}{9}} \] Now we take this result and raise it to the power of \( -\frac{9}{10} \): \[ (2^{\frac{10}{9}})^{-\frac{9}{10}} = 2^{\frac{10}{9} \cdot -\frac{9}{10}} = 2^{-1} \] ### Step 4: Calculate \( 2^{-1} \) Now we compute \( 2^{-1} \): \[ 2^{-1} = \frac{1}{2} \] ### Step 5: Combine the results Now we combine the results from Step 2 and Step 4: \[ \frac{1}{9} + \frac{1}{2} \] ### Step 6: Find a common denominator To add these fractions, we need a common denominator. The least common multiple of 9 and 2 is 18: \[ \frac{1}{9} = \frac{2}{18}, \quad \frac{1}{2} = \frac{9}{18} \] Now we can add: \[ \frac{2}{18} + \frac{9}{18} = \frac{11}{18} \] ### Final Answer Thus, the value of the expression is: \[ \frac{11}{18} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK |35 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

Find the value of 9^(3/2)

Find the value of 5/9 - 2/3

Find the value of 3^(2log_(9)3) .

Find the value of ( -5/9 ÷ 2/3 ) is

Find the value of 1/2+3/5div9/10

Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)

Find the value of (-(2)/(3))^2/(-(2)/(3))^3+((-(4)/(9)))/((2)/(3))^2