Home
Class 12
MATHS
Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),...

Show that `|{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2)`.

Answer

Step by step text solution for Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Single Option Correct Type Questions|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

Knowledge Check

  • The determinant |{:(b^(2)ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}| equals

    A
    `abc(b-c)(c-a)(a-b)`
    B
    `(b-c)(c-a)(a-b)`
    C
    0`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

    Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

    Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

    |[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

    If a,b b,c, and c,a are the roots of x^(2)-4x+3=0,x^(2)-8x+15=0 and x^(2)-6x+5=0, [{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]

    Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

    If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then