Home
Class 12
MATHS
If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2...

If `f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):}`, then find `f'(x).`

A

x

B

`x^(2)`

C

`x^(3)`

D

`x^(4)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are real numbers, then find the intervals in which f(x) = {:|(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+C^2)| is striclty increasing or decreasing.

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Knowledge Check

  • The determinant |{:(b^(2)ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}| equals

    A
    `abc(b-c)(c-a)(a-b)`
    B
    `(b-c)(c-a)(a-b)`
    C
    0`
    D
    None of these
  • If f(x)=abs(x) and g(x)= [x] then f@g(-1/2) is

    A
    0
    B
    1
    C
    -2
    D
    -1
  • Similar Questions

    Explore conceptually related problems

    Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)

    Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

    Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

    Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

    Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

    Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3