Home
Class 12
MATHS
((1 + cos phi + i sin phi)/( 1 + cos ph...

`((1 + cos phi + i sin phi)/( 1 + cos phi - i sin phi)) = cos n phi + i sin n phi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi} = \cos n\phi + i \sin n\phi, \] we will simplify the left-hand side step by step. ### Step 1: Rewrite the numerator and denominator The numerator is \(1 + \cos \phi + i \sin \phi\) and the denominator is \(1 + \cos \phi - i \sin \phi\). ### Step 2: Use the identity for \(1 + \cos \phi\) Using the trigonometric identity, we can express \(1 + \cos \phi\) as: \[ 1 + \cos \phi = 2 \cos^2 \left(\frac{\phi}{2}\right). \] Thus, we can rewrite the numerator: \[ 1 + \cos \phi + i \sin \phi = 2 \cos^2 \left(\frac{\phi}{2}\right) + i \sin \phi. \] ### Step 3: Rewrite \(\sin \phi\) using half-angle identity Using the half-angle identity, we have: \[ \sin \phi = 2 \sin \left(\frac{\phi}{2}\right) \cos \left(\frac{\phi}{2}\right). \] So, the numerator becomes: \[ 2 \cos^2 \left(\frac{\phi}{2}\right) + i \cdot 2 \sin \left(\frac{\phi}{2}\right) \cos \left(\frac{\phi}{2}\right). \] ### Step 4: Factor out \(2 \cos \left(\frac{\phi}{2}\right)\) Factoring out \(2 \cos \left(\frac{\phi}{2}\right)\) from the numerator gives: \[ 2 \cos \left(\frac{\phi}{2}\right) \left( \cos \left(\frac{\phi}{2}\right) + i \sin \left(\frac{\phi}{2}\right) \right). \] ### Step 5: Simplify the denominator Now, we simplify the denominator: \[ 1 + \cos \phi - i \sin \phi = 2 \cos^2 \left(\frac{\phi}{2}\right) - i \cdot 2 \sin \left(\frac{\phi}{2}\right) \cos \left(\frac{\phi}{2}\right). \] Factoring out \(2 \cos \left(\frac{\phi}{2}\right)\) gives: \[ 2 \cos \left(\frac{\phi}{2}\right) \left( \cos \left(\frac{\phi}{2}\right) - i \sin \left(\frac{\phi}{2}\right) \right). \] ### Step 6: Form the fraction Now we can form the fraction: \[ \frac{2 \cos \left(\frac{\phi}{2}\right) \left( \cos \left(\frac{\phi}{2}\right) + i \sin \left(\frac{\phi}{2}\right) \right)}{2 \cos \left(\frac{\phi}{2}\right) \left( \cos \left(\frac{\phi}{2}\right) - i \sin \left(\frac{\phi}{2}\right) \right)}. \] ### Step 7: Cancel common terms The \(2 \cos \left(\frac{\phi}{2}\right)\) cancels out: \[ \frac{\cos \left(\frac{\phi}{2}\right) + i \sin \left(\frac{\phi}{2}\right)}{\cos \left(\frac{\phi}{2}\right) - i \sin \left(\frac{\phi}{2}\right)}. \] ### Step 8: Recognize the result This fraction can be recognized as the exponential form of a complex number: \[ \frac{e^{i \frac{\phi}{2}}}{e^{-i \frac{\phi}{2}}} = e^{i \phi} = \cos \phi + i \sin \phi. \] ### Step 9: Generalize to \(n\phi\) By applying the same logic, we can generalize this to show that: \[ \frac{1 + \cos n\phi + i \sin n\phi}{1 + \cos n\phi - i \sin n\phi} = \cos n\phi + i \sin n\phi. \] Thus, we have proven the original equation.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) |42 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Express the following in a + ib form: (a) ((cos alpha + i sin alpha)^(4))/((sin beta + i cos beta)^(5)) (b) ((1+ cos phi + i sin phi)/(1 + cos phi - isin phi))^(n) (c) ((cos alpha + i sin alpha)(cos beta + i sin beta))/((cos gamma + i sin gamma)(cos delta + i sin delta))

If ((1+cos phi+i sin phi)/(1+cos phi v-i sin phi))^(n)=u+iv, where u and v all real number,then u is :

int((3sin phi-2)cos phi)/(5-cos phi-4sin phi)d phi

If a sin phi+b cos phi=c then a cos phi-b sin phi is

(1+sin phi+i cos phi)/((1+sin phi-i cos phi)^(n))=cos(n(pi)/(2)-n phi)+i sin(n(pi) /(2)-n phi)

If ((1+cos phi+i sin phi)/(1+cos phi-i sin phi))^(n)=u+iv, where u and v all real numbers,then u is

(sec phi-tan phi)^2 (1+sin phi)^2 div sin^2 phi =?

int(2sin2 phi-cos phi)/(6-cos^(2)phi-4sin phi)d phi