Home
Class 12
MATHS
(3 + omega + 3 omega ^(2) ) ^(4) equals...

`(3 + omega + 3 omega ^(2) ) ^(4)` equals

A

16

B

`16 omega`

C

`10 omega^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (3 + \omega + 3 \omega^2)^4 \), where \( \omega \) is a cube root of unity, we can follow these steps: ### Step 1: Understand the properties of cube roots of unity The cube roots of unity are given by: - \( 1 \) - \( \omega \) - \( \omega^2 \) They satisfy the following properties: - \( 1 + \omega + \omega^2 = 0 \) - \( \omega^3 = 1 \) ### Step 2: Simplify the expression inside the parentheses We need to simplify \( 3 + \omega + 3\omega^2 \): \[ 3 + \omega + 3\omega^2 = 3 + \omega + 3(-1 - \omega) \quad \text{(using } \omega^2 = -1 - \omega\text{)} \] \[ = 3 + \omega - 3 - 3\omega = -2\omega \] ### Step 3: Raise the simplified expression to the power of 4 Now we raise \( -2\omega \) to the power of 4: \[ (-2\omega)^4 = (-2)^4 \cdot \omega^4 = 16 \cdot \omega^4 \] ### Step 4: Simplify \( \omega^4 \) Since \( \omega^3 = 1 \), we can express \( \omega^4 \) as: \[ \omega^4 = \omega^3 \cdot \omega = 1 \cdot \omega = \omega \] ### Step 5: Combine the results Now substituting back, we have: \[ (-2\omega)^4 = 16 \cdot \omega \] ### Final Result Thus, the final result is: \[ (3 + \omega + 3\omega^2)^4 = 16\omega \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

(2 + omega + omega ^ (2)) ^ (3) + (1 + omega-omega ^ (2)) ^ (3) = (1-3 omega + omega ^ (2)) ^ (4) = 1

If omega is a non-real cube root of unity, then Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) omega + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) omega + c_(3) omega^(2))| is equal to

If omega,omega^(2) be imaginary cube root of unity then (3+3 omega+5 omega^(2))^(6)-(2+6 omega+2 omega^(2))^(3) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. (3 + omega + 3 omega ^(2) ) ^(4) equals

    Text Solution

    |

  2. If omega is an imaginary cube root of unity, then (1-omega-omega^(2))^...

    Text Solution

    |

  3. If omega^(3) = 1 and omega ne 1 then (1+omega)(1+omega^2)(1+omega^4)...

    Text Solution

    |

  4. If omega is a cube root of unity, then find the value of the following...

    Text Solution

    |

  5. If 1, omega, omega^2 be the cube roots of unity, then the value of (1 ...

    Text Solution

    |

  6. 1 , omega , omega ^(2) are the cube roots of unity, then the value ...

    Text Solution

    |

  7. If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)...

    Text Solution

    |

  8. If omega is complex cube root of unity, then the value of (1 + 2...

    Text Solution

    |

  9. If omega(ne 1) be a cube root of unity and (1+omega^(2))^(n)=(1+omega^...

    Text Solution

    |

  10. If omega imaginary cube root of unity , then sin {(omega ^(13) ...

    Text Solution

    |

  11. If sin ^(-1) {(1)/( 2i) ( z - 3)} be the angle of a triangle and if ...

    Text Solution

    |

  12. sin "" (pi)/( 900) { sum(r = 1)^(10) ( r - omega ) ( r - omega ^(2))} ...

    Text Solution

    |

  13. The cube roots of unity lie on a circle

    Text Solution

    |

  14. The cube roots of unity

    Text Solution

    |

  15. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  16. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  17. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  18. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  19. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  20. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |